Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T10:05:04.190Z Has data issue: false hasContentIssue false

Modelling of the Texture Formation in Electro-Deposited Metal Films

Published online by Cambridge University Press:  15 February 2011

D. Y. Li
Affiliation:
Dept. of Metallurgical Engineering, McGill University, 3450 University Street, Montreal, PQ, Canada H3A 2A7
J. A. Szpunar
Affiliation:
Dept. of Metallurgical Engineering, McGill University, 3450 University Street, Montreal, PQ, Canada H3A 2A7
Get access

Abstract

The texture formation during the electrodeposition process was simulated using a Monte Carlo technique. The simulation uses a two dimensional hexagonal lattice to map the microstructure of the deposit. The criteria for the texture formation was based on the minimization of the system’s free energy. The anisotropy of surface-energy was taken into account. Since a metal’s surface energy is influenced by hydrogen adsorption, the texture of metal deposits may vary with hydrogen co-deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Reddy, A.K.N., J. Electroanal. Chem., 6, 141 (1963).Google Scholar
2. Pangarov, N.A., J. Electroanal. Chem., 9, 70 (1965).Google Scholar
3. Park, J.R. and Lee, D.N., J. Korean Inst. Metals, 12, 243 (1976).Google Scholar
4. Epelboin, I., Froment, M. and Maurin, G., Plating, 56, 1356 (1969).Google Scholar
5. Li, D.Y. and Szpunar, J.A., J. Electr. Mater., 22, 653 (1993).Google Scholar
6. Postl, D., Eichkorn, G. and Fischer, H., Z. Phys. Chem., 77, 138 (1972).CrossRefGoogle Scholar
7. Pick, H.J., Storey, G.G. and Vaughan, T.B., Electrochimica Acta, 2, 165 (1960).Google Scholar
8. Anderson, M.P., Srolovitz., D.J., Grest, G.S. and Sahni, P.S., Acta Metall., 32, 783, 793, 1429 (1984), 33, 509 (1985).Google Scholar
9. Sorolovitz, D.J., Grest, G.S. and Anderson, M.P., Acta Metall., 34, 1833, 2115 (1986).CrossRefGoogle Scholar
10. Srolovitz, D.J., J. Vac. Sci. Technol., A4(6), 2925 (1986).Google Scholar
11. Spittle, J.A. and Brown, S.G.R., J. Mater. Sci., 23, 1777 (1989).CrossRefGoogle Scholar
12. Raub, E. and Müller, K., Fundamentals of Metal Deposition, Elsevier Publishing Co., Amsterdam, 1967.Google Scholar
13. Parthasaradhy, N.V., Practical Electroplating Handbook, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1989.Google Scholar
14. Walsh, Frank C and Herron, Maura E, J. Phys. D: Appl. Phys., 24, 217 (1991).Google Scholar
15. Bockris, J.O’M. and Razumney, G.A., Fundamental Aspects of Electrocrystallization, Plenum Press, New York, 1967.CrossRefGoogle Scholar
16. Winand, René, Fundamentals and Practice of Aqueous Electrometallurgy (short course), The Metallurgical Society of CIM, Montreal, PQ, Canada (Oct. 20-21, 1990), P.7.Google Scholar
17. Petch, N.J., Phil. Mag., 1, 331 (1956).Google Scholar
18. Okamoto, G., Horiuti, J. and Hirota, K., Sci. Papers Inst. Phys. Chem. Res., (Tokyo), 29, 223 (1936).Google Scholar
19. Wranglén, Gösta, Acta Chemica Scandinavica, 9, 661 (1955).Google Scholar
20. Iyer, R.N., Pickering, H.W. and Zamanzadeh, M., J. Electrochem. Soc., 136, 2463 (1989).Google Scholar
21. Kim, CD. and Wilde, B.E., J. Electrochem. Soc, 118, 202, (1971).CrossRefGoogle Scholar
22. Li, D.Y. and Szpunar, J.A., to be published.Google Scholar