Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T06:48:37.133Z Has data issue: false hasContentIssue false

Modification of Point Defects in Quartz for Device Applications

Published online by Cambridge University Press:  21 February 2011

J. C. King
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185
D. R. Koehler
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185
Get access

Abstract

Impurity centers in quartz play a significant role in the behavior of precision crystal resonators subjected to ionizing radiation. The substitutional Al center, charge compensated by Na, Li, H or a hole, is now known to be the primary contributing factor in most radiation-induced effects. Acoustic loss measurements, ESR measurements, optical studies and IR studies of these defects, over extended temperature ranges, have contributed substantially to our understanding of the impurity centers' role. Radiation-induced frequency and acoustic loss changes in quartz crystal resonators are now understood in terms of the evolving character of the defect center in a radiation field. This understanding has prompted material modification efforts such as high temperature electrolysis and doping technologies which permit, for instance, the fabrication of frequency control devices that are little affected by hostile environments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Anderson, T. C. and Merrill, F. G., IRE Transactions on Instrumentation I–9, 136 (1960).CrossRefGoogle Scholar
2. Aoki, T., Norisawa, K., and Sakisaka, M., Mem. Chubu Inst. Technol. (Japan) 11A, 113 (1975).Google Scholar
3. Capone, B. R., Kahan, A., Brown, R. N., and Buckmelter, J. R., IEEE Trans. Nucl. Sci (USA) NS–17, 217 (1970).CrossRefGoogle Scholar
4. Flanagan, T. M. and Wrobel, T. F., IEEE Trans. Nucl. Sci. (USA) NS–16, 130 (1969).CrossRefGoogle Scholar
5. Fraser, D. B. in: Physical Acoustics Vol. V, Mason, W. P., ed. (Academic Press, New York) pp. 59110.Google Scholar
6. Halliburton, L. E., Markes, M. E., and Martin, J. J., Proceedings of the 34th Annual Frequency Control Symposium, 1 (1980).Google Scholar
7. Hartman, E. F. and King, J. C., Proceedings of the 27th Annual Frequency Control Symposium, 124 (1973).Google Scholar
8. Hartman, E. F., King, J. C., Radiat. Eff. (GB) 26, 219 (1975).CrossRefGoogle Scholar
9. Hughes, R. C., Radiat. Eff. (GB) 26, 225 (1975).CrossRefGoogle Scholar
10. King, J. C., Phys. Rev. (USA) 109, 1552 (1958).CrossRefGoogle Scholar
11. King, J. C., Bell Sys. Tech. J. (USA) 38 573 (1959).CrossRefGoogle Scholar
12. King, J. C. and Sander, H. H., IEEE Trans. Nucl. Sci. (USA) NS–19, 23 (1972).CrossRefGoogle Scholar
13. King, J. C. and Sander, H. H., Proceedings of the 27th Annual Frequency Control Symposium, 113 (1973).Google Scholar
14. King, J. C. and Sander, H. H., IEEE Trans. Nucl. Sci. (USA) NS–20, 117 (1973).CrossRefGoogle Scholar
15. King, J. C. and Sander, H. H., Radiat. Eff.(GB) 26, 203 (1975).CrossRefGoogle Scholar
16. Koehler, D. R., Young, T. J., and Adams, R. A., Ultrasonics Symposium Proceedings 77 CH 1264–1 SU, 877 (1977).Google Scholar
17. Koehler, D.R., proceedings of the 33rd Annual Frequency Contro118 (1979).Google Scholar
18. Koehler, D. R. and Martin, J. J., to be published in the Proceedings of the 37th Annual Frequency Control Symposium.Google Scholar
19. Markes, M. E. and Halliburton, L. E., J. Appl. Phys. (USA) 50, 8172 (1979).CrossRefGoogle Scholar
20. Martin, J. J., Halliburton, L. E., Markes, M., Koumvakalis, N., Sibley, W. A., Brown, R. N., and Armington, A., Proceedings of the 33rd Annual Frequency Control Symposium, 134 (1979).Google Scholar
21. Martin, J. J., Halliburton, L. E., and Bossoli, R. B., Proceedings of the 36th Annual Frequency Control Symposium, 77 (1982).Google Scholar
22. Mattern, P. L., Proceedings of the 27th Annual Frequency Control Symposium, 139 (1973).Google Scholar
23. Mattern, P. L., Lengweiler, K. and Levy, P. W., Radiat. Eff. (GB) 26, 237 (1975).CrossRefGoogle Scholar
24. Mitchell, E. W. J. and Paige, E. G. S., Proc. Phys. Soc. B67, 262 (1954).CrossRefGoogle Scholar
25. O'Brien, M. C. M. and Pryce, M. H. L., Report of the Conference on Defects in Crystalline Solids, London, 1954 Google Scholar
26. Nelson, C. M. and Crawford, J. H. Jr., Bulletin of the American Physical Society 3, 136 (1958).Google Scholar
27. Pellegrini, P., Euler, F., Kahan, A., Flanagan, T. M., and Wrobel, T., IEEE Trans. Nucl. Sci. (USA) 25, 1267 (1978).CrossRefGoogle Scholar
28. Sosin, A., Radiat. Eff. (GB) 26, 267 (1975).CrossRefGoogle Scholar
29. Spitsyn, V. I., Pirogova, G. N., Ryabov, A. I., and Kritskaya, V. E., Radiat. Eff. (GB) 38, 29 (1978)CrossRefGoogle Scholar
30. Young, T. J., Koehler, D. R., and Adams, R. A., Proceedings of the 32nd Annual Frequency Control Symposium, 34 (1978).Google Scholar