Published online by Cambridge University Press: 22 February 2011
Moisture-assisted crack growth in polymer/glass interfaces was measured as a function of the applied energy release using a four-point flexure test coupled with an inverted microscope. The specimens consisted of two glass plates bonded together with a thin layer of epoxy adhesive. Roughening the surface of one of the interfaces increased its fracture resistance sufficiently so that crack growth on this interface was inhibited. Thus, crack growth would occur only on the “smooth” interface (one with the least fracture resistance) or in the case where both interfaces were smooth, dual cracking occurred. Finite element analysis was used to explain the observed crack growth results.