Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-30T23:22:15.706Z Has data issue: false hasContentIssue false

A Molecular Dynamics Simulation Study of the Nonlinear Optical Response of Liquid Crystalline Systems

Published online by Cambridge University Press:  15 March 2011

Kenji Kiyohara
Affiliation:
Special Division for Human Life Technology and National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan Research Institute for Computational Sciences, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
Koji Ohta
Affiliation:
Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
Yo Shimizu
Affiliation:
Special Division for Human Life Technology and National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
Get access

Abstract

We investigated the third-order nonlinear optical response of a Gay-Berne system at the isotropic, nematic, and smectic phases by molecular dynamics simulation. The components of the optical response were calculated for the three different axes with respect to the director of the system, separately. In the nematic phase, in particular, we observed that the response function does not vanish at long times. This means that the orientation of the director of the system is permanently changed by an instant irradiation of polarized light, as a result of third-order nonlinear optical response. In the smectic phase, however, all the components of the response function decay quickly. Our results give a theoretical background at molecular level on the interpretation of the reported experimental observations of peculiar dynamics of liquid crystalline systems at irradiation of laser lights.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wong, George K. L. and Shen, Y. R., Phys. Rev. Lett., 30, 895 (1973).Google Scholar
2. Durbin, S. D., Arakelian, S. M., and Shen, Y. R., Phys. Rev. Lett., 47, 1411 (1981).Google Scholar
3. Hsiung, H., Shi, L. P., and Shen, Y. R., Phys. Rev. A30, 1453 (1984).Google Scholar
4. Santamato, E., Abbate, G., Maddalena, P., Marrucci, L., and Shen, Y. R., Phys. Rev. Lett., 64, 1377 (1990).Google Scholar
5. Khoo, I. C., Phys. Rev. A23, 2077 (1981)Google Scholar
6. Eyring, Gregory and Fayer, M. D., J. Chem. Phys., 81, 4314 (1981).Google Scholar
7. Khoo, I. C., Lindquist, R. G., Michael, R. R., Mansfield, R. J., and LoPresti, P., J. Appl. Phys. 69, 3853 (1991).Google Scholar
8. Deeg, F. W., Greenfield, S. R., Stankus, John J., Newell, Vincent J., and Fayer, M. D., J. Chem. Phys., 93, 3503 (1990).Google Scholar
9. Lalanne, J. R., Destrade, C., Nguyen, H. T., and Marcerou, J. P., Phys. Rev. A44, 6632 (1991).Google Scholar
10. Gay, J. G. and Berne, B. J., J. Chem. Phys., 74, 3316 (1981).Google Scholar
11. Miguel, E. de, Rull, L. F., Chalam, M. K., and Gubbins, K. E., Mol. Phys., 74, 405 (1991).Google Scholar
12. Miguel, E. de, Rull, L. F., Chalam, M. K., and Gubbins, K. E., Mol. Phys., 61, 1223 (1990).Google Scholar
13. Miguel, E. de, Rull, L. F., and Gubbins, K. E., Phys. Rev., A45, 3813 (1992).Google Scholar
14. Perera, A., Ravichandran, S., Moreau, M., and Bagchi, B., J. Chem. Phys., 106, 1280 (1997).Google Scholar
15. Ravichandran, S., Perera, A., Moreau, M., and Bagchi, B., J. Chem. Phys., 109, 7349 (1998).Google Scholar
16. Sarman, S., J. Chem. Phys., 108, 7909 (1998).Google Scholar
17. Frenkel, D. and McTague, J. P., J. Chem. Phys., 72, 2801 (1980).Google Scholar
18. Kiyohara, K., Kamada, K., and Ohta, K., J. Chem. Phys., 112, 6338 (2000).Google Scholar
19. Hellwarth, R. W., Prog. Quant. Electr., 5, 1 (1977).Google Scholar
20. Kubo, R., J. Phys. Soc. Japan, 12, 570 (1957).Google Scholar
21. McQuarrie, D. A., Statistical Mechanics, (Harper Collins, New York, 1976).Google Scholar
22. Kiyohara, Kenji, Ohta, Koji, and Shimizu, Yo, To appear in Mol. Phys. (2002).Google Scholar