Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T00:55:21.620Z Has data issue: false hasContentIssue false

Molecular Dynamics Studies of Defects in Si

Published online by Cambridge University Press:  26 February 2011

M.S. Duesbery
Affiliation:
GeoCenters Inc., Fort Washington, MD 20744.
D.J. Michel
Affiliation:
Naval Research Laboratory, Washington D.C., 20375–5000.
Efthimios Kaxiras
Affiliation:
Naval Research Laboratory, Washington D.C., 20375–5000.
B. Joos
Affiliation:
Ottawa-Carleton Institute for Physics, Ottawa University Campus, Ottawa Ontario, Canada KIN 6N5.
Get access

Abstract

The efficacy of three modern empirical potentials in the molecular dynamic simulation of the configurations, energies and mobility of dislocation cores and their excitations is assessed in the light of recent literature. The results are found to be inconsistent both between different potentials and with experimental evidence. It is argued that the discrepancies are rooted in the limited databases which have been used in the construction of empirical potentials. The reason for the discrepancies is demonstrated by comparing empirical and density functional calculations of the generalized stacking fault energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Labusch, R. and Schröter, W., Dislocations in Solids, edited by Nabarro, F.R.N., (North Holland, Amsterdam, 1980), vol. 5, p127.Google Scholar
2. Alexander, H., Dislocations in Solids, edited by Nabarro, F.R.N., (North Holland, Amsterdam, 1986), vol. 7, p114.Google Scholar
3. Alexander, H., Dislocations 1984, edited by Veyssière, P., Kubin, L. and Castaing, J., (CNRS, Paris, 1984), p283.Google Scholar
4. Grazhulis, V.A., Kveder, V.V. and Mukhina, V.Yu., Phys. Stat. Sol. a 43, 407, (1977);CrossRefGoogle Scholar
Ono, H. and Sumino, K., Jap. J. Appl. Phys. 19, L629, (1980);Google Scholar
Ono, H. and Sumino, K., J. Appl. Phys. 54, 4426, (1983);CrossRefGoogle Scholar
Weber, E.R. and Alexander, H., J. de Physique 44, C4–319, (1983).Google Scholar
5. Marklund, S., Phys. Stat. Sol. b 92, 83, (1979);Google Scholar
Jones, R., J. de Physique 40, C6–33, (1979);Google Scholar
Marklund, S., Phys. Stat. Sol. b 100, 77, (1980);CrossRefGoogle Scholar
Jones, R. and Marklund, S., Phys. Stat. Sol. b 101, 585, (1980);Google Scholar
Lapiccirella, A. and Lodge, K.W., Institute of Physics Conference Series, vol. 60, 51, (1981);Google Scholar
Chelikowsky, J.R., Phys. Rev. Lett. 49, 1569, (1982);Google Scholar
Heggie, M. and Jones, R., Phil. Mag. 48, 365, (1983);Google Scholar
Heggie, M. and Jones, R., Phil. Mag. 48, 379, (1983);CrossRefGoogle Scholar
Lodge, K.W., Lapiccirella, A. and Altmann, S.L., Institute of Physics Conference Series, vol. 67, 55, (1983);Google Scholar
Chelikowsky, J.R. and Spence, J.C.H., Phys. Rev. B 30, 694, (1984);Google Scholar
Heggie, M. and Jones, R., Institute of Physics Conference Series, vol. 87, 367, (1987).Google Scholar
6. Duesbery, M.S. and Richardson, G.Y., CRC Critical Reviews in Solid State and Materials Science, in the press, (1990).Google Scholar
7. Vitek, V., Dislocations and the Properties of Real Materials, (Physical Society, London, 1985), p30.Google Scholar
8. Veyssière, P., Revue de Physique Appliqué, 23, 431, (1988).CrossRefGoogle Scholar
9. Duesbery, M.S., Dislocations in Solids, edited by Nabarro, F.R.N., (North Holland, Amsterdam, 1989), vol. 8, p67.Google Scholar
10. Hirth, J.P. and Lothe, J., Theory of Dislocations, 2nd. ed., (Wiley, New York, 1982), ch. 11.Google Scholar
11. Louchet, F. and Thibault-Desseaux, J., Revue de Physique Appliquèe, 22, 207, (1987).Google Scholar
12. Hirsch, P.B., Fundamentals of Deformation and Fracture, edited by Bilby, B.A., Miller, K.J. and Willis, J.R., (Cambridge University Press, Cambridge, 1984), p326.Google Scholar
13. George, A. and Rabier, J., Revue de Physique Appliquée, 22, 941, (1987).CrossRefGoogle Scholar
14. Marklund, S., J. de Physique 44, C4–25, (1983).Google Scholar
15. Stillinger, F.H. and Weber, T.A., Phys. Rev. B 31, 5262, (1985).CrossRefGoogle Scholar
16. Tersoff, J., Phys. Rev. B 39, 5566, (1989).CrossRefGoogle Scholar
17. Biswas, R. and Hamann, D.R., Phys. Rev. Lett. 55, 2001, (1985).CrossRefGoogle Scholar
18. Baskes, M.I., Phys. Rev. Lett. 59, 2666, (1987).Google Scholar
19. Kaxiras, E. and Pandey, K.C., Phys. Rev. B 38, 12736, (1988).CrossRefGoogle Scholar
20. Duesbery, M.S., Michel, D.J. and Joos, B., MRS Symposium Proc. Vol. 163, 941, (1990).Google Scholar
21. Duesbery, M.S., Joos, B. and Michel, D.J., Phys. Rev. B, in the press.Google Scholar
22. Peierls, R., Proc. Phys. Soc. London, 52, 34, (1940);CrossRefGoogle Scholar
Nabarro, F.R.N., Proc. Phys. Soc. London, 59, 256, (1947).CrossRefGoogle Scholar
23. Eshelby, J.D., Phil. Mag. 40, 903, (1949).Google Scholar
24. Vitek, V., Phil. Mag., 18, 773, (1968);Google Scholar
Crystal Lattice Defects 5, 1, (1974).Google Scholar