No CrossRef data available.
Published online by Cambridge University Press: 11 February 2011
The goal of this research was to determine the molecular structure of interfaces between plasma polymerized acetylene films and steel substrates and to elucidate the mechanisms by which the films adhere to the substrates. Inductively-coupled, RF-powered plasma reactors interfaced to an FTIR spectrometer and to an XPS spectrometer were used to deposit films ranging in thickness from a few tens of nanometers to approximately one nanometer onto polished steel substrates. As the thickness of the films was decreased, features in the XPS and FTIR spectra that were characteristic of the bulk of the films decreased in intensity and features characteristic of the interface increased in intensity. A band was observed near 1706 cm−1 in FTIR spectra of the thickest films and attributed to carbonyl groups. Bands were observed near 1600 and 1045 cm−1 in spectra of the thinnest films and attributed to iron carboxylate and iron alkoxide groups that were responsible for adhesion of the films to the substrates. Oxygen required to form these groups was available from water or oxygen molecules adsorbed onto the walls of the reactor.