Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-14T22:56:45.218Z Has data issue: false hasContentIssue false

Molecularly Engineered Polymer Leds

Published online by Cambridge University Press:  16 February 2011

Stephen C. Moratti
Affiliation:
University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
Donald C. Bradley
Affiliation:
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 OHE, U.K.
Richard H. Friend
Affiliation:
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 OHE, U.K.
Neil C. Greenham
Affiliation:
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 OHE, U.K.
Andrew B. Holmes
Affiliation:
University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
Get access

Abstract

Polymeric light emitting devices may be fabricated from a simple structure consisting of a low work function cathode (typically calcium or Magnesium), a conjugated semiconducting polymer and a transparent anode (typically indium-tin oxide). Optimum device efficiencies require the balanced injection of electrons and holes. This paper describes the application of molecular engineering in the design of a family of poly (cyanoterephthalylidenene) s which show increased electron affinity over the unsubstituted analogue [poly (p-phenylenevinylene) PPV]. In particular these polymers as the emissive layer in a bilayer device with indium tin oxide (ITO, positive transparent contact) and aluminum (stable negative contact) and PPV as a hole transporting layer exhibit internal efficiencies up to 4%.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., MacKay, K., Friend, R.H., Burn, P.L., Holmes, A.B., Nature, 347, 539 (1990).Google Scholar
2. Burn, P.L., Bradley, D.D.C., Friend, R.H., Halliday, D.A., Holmes, A.B., Jackson, R.W., Kraft, A., J. Chem. Soc, Perkin Trans. 1, 1992. 3225.Google Scholar
3 Burn, P.L., Holmes, A.B., Kraft, A., Bradley, D.D.C., Brown, A.R., Friend, R.H., Gymer, R.W., Nature 356, 47 (1992).Google Scholar
Burn, P.L., Kraft, A., Baigent, D.R., Bradley, D.D.C., Brown, A.R., Friend, R.H., Gymer, R.W., Holmes, A.B., Jackson, R.W., J. Am. Chem. Soc. 115, 10117 (1993).Google Scholar
4 (a) Braun, D., Heeger, A.J., Appl. Phys. Lett. 58, 1982 (1991).Google Scholar
(b) Braun, D., Heeger, A.J., Kroemer, H., Electron, J.. Mater. 20, 945 (1991).Google Scholar
(c) Gustafsson, G., Cao, Y., Treacy, G.M., Klavetter, F., Colaneri, N., Heeger, A.J., Nature 357, 477 (1992).Google Scholar
(d) Braun, D., Heeger, A.J., Thin Solid Films 216, 96 (1992).Google Scholar
5. Tang, C.W., VanSlyke, S.A., Appl. Phys. Lett. 51, 913 (1987).Google Scholar
6. Adachi, C., Tsutsui, T., Saito, S., Appl. Phys. Lett. 57, 531 (1990).Google Scholar
7. Burn, P.L., Holmes, A.B., Kraft, A., Brown, A.R., Bradley, D.D.C., Friend, R.H., in Electrical. Optical, and Magnetic Properties of Organic Solid State Materials: edited by Chiang, L.Y., Garito, A.F., and Sandman, D.J. (Mater. Res. Soc. Symp. 247, Boston MA, 1992) pp. 647654.Google Scholar
8. Brown, A.R., Bradley, D.D.C., Burn, P.L., Burroughes, J.H., Friend, R.H., Greenham, N.C., Holmes, A.B., Kraft, A., Appl. Phys. Lett. 61, 2793 (1992).Google Scholar
9. Holmes, A.B., Bradley, D.D.C., Brown, A.R., Burn, P.L., Burroughes, J.H., Friend, R.H., Greenham, N.C., Gymer, R.W., Halliday, D.A., Jackson, R.W., Kraft, A., Martens, J.H.F., Pichler, K., Samuel, I.D.W., Synth. Met. 55–57, 4031 (1993).Google Scholar
10. Fleming, I., Frontier Orbitals and Organic Chemical Reactions (Wiley, New York, 1976), p. 115.Google Scholar
11. Heibig, M., Hörhold, H.-H., Makromol. Chem. 194, 1607 (1993).Google Scholar
12. (a) Wessling, R.A., J. Polym. Chem., Polym. Symp. 72, 55 (1985).Google Scholar
(b) Lenz, R.W., Han, C.-C., Stenger-Smith, J., Karasz, F.E., J. Polym. Sci., Part A: Polym. Chem. Ed. 26 3241 (1988).Google Scholar
13. Wudl, F., Allemand, P.M., Srdanov, G., Ni, Z., McBranch, D., ACS Symp. Ser. Mater. (Nonlinear Opt.) 455, 683 (1991).Google Scholar
14. Brooke, G.M., Woolley, M.F., Polymer 34, 1282 (1993).Google Scholar
15. Lenz, R.W., Handlovitis, C.E., Org, C.E. J.. Chem. 25, 813 (1960).Google Scholar
16. Hörhold, H.-H., Chem, Z. 12, 41 (1972).Google Scholar
17. Early batches showed lower average molecular weights (Mn 4,000).Google Scholar
18. Greenham, N.C., Moratti, S.C., Bradley, D.D.C., Friend, R.H. and Holmes, A.B., Nature 365, 628 (1993).Google Scholar