Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T08:51:28.697Z Has data issue: false hasContentIssue false

Molecularly Imprinted Polymers (MIPs) Against Uracils: Functional Monomer Design, Monomer-Template Interactions In Solution And MIP Performance In Chromatography

Published online by Cambridge University Press:  01 February 2011

Andrew J. Hall
Affiliation:
Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55099 Mainz, Germany.
Panagiotis Manesiotis
Affiliation:
Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55099 Mainz, Germany.
Jakob T. Mossing
Affiliation:
Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55099 Mainz, Germany.
Börje Sellergren
Affiliation:
Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55099 Mainz, Germany.
Get access

Abstract

The interaction of N1-substituted uracils (cyclohexyl (1) and benzyl (2)) with three polymerisable recognition elements, the novel monomers 9-(3/4-vinylbenzyl)adenine (3) and 2,6-diamino-9-(3/4-vinylbenzyl)purine (4) and the previously synthesised monomer 2,6-bis(acrylamido)pyridine (5), has been studied via1H NMR in deuterio-chloroform solution. MIPs against (2) have been prepared using each of the monomers and tested in the chromatographic mode. The effect of the number and type of hydrogen bonds formed between the templates and the functional monomers is reflected in the values of the apparent association constants obtained from the solution study and by the performance of the subsequently prepared MIPs in the chromatographic mode.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sellergren, B. (Ed.), Molecularly Imprinted Polymers: Man-Made Mimics of Antibodies and Their Applications in Analytical Chemistry (Elsevier Science B.V. (NL), 2001); R.A. Bartsch and M. Maeda (Eds.), Molecular and Ionic Recognition with Imprinted Polymers (ACS Symposium Series 703, Washington, D.C., 1998).Google Scholar
2. Shea, K.J., Spivak, D.A., Sellergren, B., J. Am. Chem. Soc., 115, 3368 (1993)Google Scholar
3. Arshady, R. and Mosbach, K., Makromol. Chem., 182, 687 (1981); B. Sellergren, M. Lepistö, K. Mosbach, Tetrahedron Lett., 25, 5211 (1984)Google Scholar
4. Yano, K., Tanabe, K., Takeuchi, T., Matsui, J., Ikebukuro, K., Karube, I., Anal. Chim. Acta, 363, 111117 (1998).Google Scholar
5. Kugimiya, A., Mukawa, T. & Takeuchi, T., The Analyst, 126 (6), 772774 (2001).Google Scholar
6. Kundu, N.G., Sikdar, S., Hertzberg, R.P., Schmitz, S.A., Khatri, S.G., J. Chem. Soc., Perkin Trans. 1, 1985, 1295.Google Scholar
7. Montgomery, J.A. and Hewson, K., J. Am. Chem. Soc., 82, 463 (1960)Google Scholar
8. Oikawa, E., Motomi, K., Aoki, T., J. Polym. Sci.: Part A: Polym. Chem., 31, 457465 (1993).Google Scholar
9. Connors, K.A., Binding Constants: The Measurement of Molecular Complex Stability (J.Wiley & Sons, New York, 1987).Google Scholar
10. Lancelot, G., J. Am. Chem. Soc., 99, 7037 (1977)Google Scholar
11. Yu, L. & Schneider, H.-J., Eur. J. Org. Chem., 1999, 16191625.Google Scholar