No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
Organic thin film devices are of interest for a variety of forthcoming ubiquitous electronics applications. In order to build ubiquitous high-performance devices, it is necessary to fabricate crystalline thin films of various organic materials onto “ubiquitous substrates” that are dictated by applications. However, many organic thin films crystallize only on a limited selection of substrates. Unfortunately, promising organic molecules, which have a large overlap of pi-orbitals between molecules, cannot migrate freely on a substrate because of stronger cohesion between molecules than interaction between the molecule and the substrate. Therefore, enhancement of the molecule-substrate interaction, i.e. ‘molecular wettability’ should promote crystallization. We found that an ultrasmooth monolayer of pentacene (C22H14), which can be grown on many general dielectric substrates, changes the molecular wettability of a substrate for other poorly wettable organic materials. We also demonstrate that a field effect transistor (FET) using a crystalline C60 thin film on a pentacene-buffered substrate can have a mobility of 4.9 cm2/Vs, which is 5-fold higher than that of C60 FETs without the buffer. Molecular wetting-controlled substrates can thus offer a general solution to the fabrication of high-performance crystalline plastic and molecular electronics.