Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T07:17:45.387Z Has data issue: false hasContentIssue false

Monte Carlo Calculation Of High- And Low-Field AlxGa1−xN Electron Transport Characteristics

Published online by Cambridge University Press:  10 February 2011

J.D. Albrecht
Affiliation:
Department of Electrical and Computer Engineering University of Minnesota, Minneapolis, MN 55455
R. Wang
Affiliation:
Department of Electrical and Computer Engineering University of Minnesota, Minneapolis, MN 55455
P.P. Ruden
Affiliation:
Department of Electrical and Computer Engineering University of Minnesota, Minneapolis, MN 55455
M. Farahmand
Affiliation:
School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, GA 30332
E. Bellotti
Affiliation:
School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, GA 30332
K.F. Brennan
Affiliation:
School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, GA 30332
Get access

Abstract

The Monte Carlo technique is used to simulate electron transport in bulk, wurtzite phase AlxGa1−xN. A multi-valley analytical band model consisting of five spherical, non-parabolic conduction band valleys at the Γ, U, M, and K symmetry points of the Brillouin zone is matched to band structures of GaN and AlN. Parameters for the AlxGa1−xN alloy are obtained by linear interpolation. The Monte Carlo simulations are performed for ambient temperatures in the range of 300K to 600K. Scattering mechanisms taken into account include ionized impurity scattering and alloy scattering, in addition to deformation potential scattering (intra- and inter-valley), and polar optical phonon scattering. We present results for the electron steady-state drift velocity and the valley occupancy for electric fields up to 500 kV/cm. Low-field drift mobilities are extracted from the Monte Carlo calculations as functions of the electron concentration, of the ambient temperature, and of the alloy composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Khan, M. A., Kuznia, J. N., Olson, D. T., Hove, J. M. Van, Blasingame, M., Reitz, L. F., Appl. Phys. Lett., 60, 2917 (1992).Google Scholar
2 Zhang, X., Kung, P., Walker, D., Piotrowsky, J., Rogalski, A., Saxler, A., and Razeghi, M., Appl. Phys. Lett., 67,2028 (1995).Google Scholar
3 Hove, J. M. Van, Hickman, R., Klaassen, J. J., Chow, P. P., and Ruden, P. P., Appl. Phys. Lett., 70, 2282 (1997).Google Scholar
4 Walker, D., Zhang, X., Saxler, A., Kung, P., Xu, J., and Razeghi, M., Appl. Phys. Lett., 70, 949 (1997).Google Scholar
5 Mouton, O., Thobel, J. L., and Fauquembergue, R., J. Appl. Phys., 81, 3160 (1997); C. Moglestue, Rep. Prog. Phys., 53, 1333 (1990).Google Scholar
6 Wang, R., Ruden, P. P., Kolnik, J., Oguzman, I., and Brennan, K.F., J. Phys. Chem. Solids, 58,913 (1997).Google Scholar
7 Lambrecht, W. R. L., Chapter XI in III-Nitrides, ed. Pankove, J. I. and Moustakas, T. D., (Academic Press, New York 1996), in series on Semiconductors and Semimetals, ed. Weber, E. and Willardson, B..Google Scholar
8 Littlejohn, M. A., Hauser, J. R., Glisson, T. H., Ferry, D. K., and Harrison, J. W., Solid-State Electronics, 21, 107 (1978)Google Scholar
9 Tietjen, J. J. and Weisberg, L. R., Appl. Phys. Lett., 7, 261 (1965).Google Scholar
10 Vechten, J. A. Van and Bergstresser, T. K., Phys. Rev. B, 1, 3351 (1970).10.1103/PhysRevB.1.3351Google Scholar
11 Martin, G., Botchkarev, A., Rockett, A., and Morcoç, H., Appl. Phys. Lett., 68, 2541 (1996); G. Martin, S. Strite, A. Botchkarev, A. Agarwal, A. Rockett, H. Morkoç, W. R. L. Lambrecht, and B. Segall, Appl. Phys. Lett., 65, 610 (1994).Google Scholar
12 Waldrop, J. R. and Grant, R. W., Appl. Phys. Lett., 68,2879 (1996).Google Scholar
13 Wickenden, D. K., Bargeron, C. B., Bryden, W. A., and Miragliotta, J., Appl. Phys. Lett., 65, 2024 (1994).Google Scholar
14 Angerer, H., Brunner, D., Freudenberg, F., Ambacher, O., Stutzmann, M., Hopler, R., Metzger, T., Born, E., Dollinger, G., Bergmaier, A., Karsch, S., and Kömer, H.-J., Appl. Phys. Lett., 71, 1504 (1997).Google Scholar
15See, e.g., Phillips, J. C., Rev. Mod. Phys., 42, 317 (1970).Google Scholar
16 Chin, V. W. L., Zhou, B., Tansley, T. L., and Li, X., J. Appl. Phys., 77, 6064 (1995).Google Scholar
17 Demangeot, F., Groenen, J., Frandon, J., Renucci, M. A., Briot, O., Ruffenach-Clur, S., Aulombard, R.-L., MRS Internet J. Nitride Semicond. Res., 2, 40 (1997).Google Scholar
18 Christensen, N. E. and Gorczyca, I., Phys. Rev. B, 50, 4397 (1994).Google Scholar
19 Hauser, J. R., Littlejohn, M. A., and Glisson, T. H., Appl. Phys. Lett., 28, 458 (1976).Google Scholar
20 Albrecht, J. D., Wang, R. P., Ruden, P. P., Farahmand, M., and Brennen, K. F., accepted for J. Appl. Phys. (1998).Google Scholar
21 Kolnik, J., Oguzman, I. H., Brennan, K. F., Wang, R., Ruden, P. P., and Wang, Y., J. Appl. Phys., 78, 1033 (1995).Google Scholar