Published online by Cambridge University Press: 08 April 2015
Alkaline earth aluminosilicate glasses (AeAS) with different MoO3 additions have been produced and assessed. MoO3 solubility increases with the equimolar substitution of smaller to larger alkaline earths and reaches 5.34 mol% in magnesium aluminosilicate glass (MAS). All visibly homogeneous glasses are X-ray amorphous, while the partially crystallised glasses exhibit some small X-ray diffraction peaks which are probably due to corresponding molybdates. The addition of MoO3 decreases glass transition and crystallisation temperatures and creates two broad Raman bands which are assigned to vibrations of MoO42‒ tetrahedra. The intensities of these bands increase along with MoO3 incorporation until the maximum solubility is reached. Electron microscopy shows that these separated particles are spherical, with sub-micron diameters and are randomly dispersed within glass. The separated phases are formed through liquid-liquid separation and thereafter crystallisation. Overall AeAS glasses look quite promising for molybdate immobilisation with MAS glasses being particularly attractive.