Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T10:09:36.262Z Has data issue: false hasContentIssue false

Morphology and Curie Temperature Changes upon Annealing of Co/W(110)

Published online by Cambridge University Press:  10 February 2011

A. Bauer
Affiliation:
Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany, bauer@physik.fu-berlin.de
A. Mühlig
Affiliation:
Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany, bauer@physik.fu-berlin.de
T. Günther
Affiliation:
Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany, bauer@physik.fu-berlin.de
M. Farle
Affiliation:
Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany, bauer@physik.fu-berlin.de
K. Baberschke
Affiliation:
Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany, bauer@physik.fu-berlin.de
G. Kaindl
Affiliation:
Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany, bauer@physik.fu-berlin.de
Get access

Abstract

Annealing of CoAV(110) ultrathin films causes rather strong changes of film morphology and magnetic properties, which has been studied by scanning tunneling microscopy (STM) and alternating-current magneto-optical Kerr effect (ac-MOKE). Annealing above 500 K of room-temperature grown 2 monolayers (ML) thick Co/W(110) films leads to the formation of islands and a decrease of the Curie temperature 7C. At 4 ML, on the other hand, a network of interconnected islands is formed upon annealing, resulting in an enhanced TC. While the increase of TC at 4 ML is explained by an increase of the local film thickness, the anomalous TC behavior at 2 ML is assigned to the occurrence of superparamagnetism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Garreau, G., Farle, M., Beaurepaire, E., and Baberschke, K., Phys. Rev. B 55, 330 (1997).Google Scholar
2. Elmers, H.J., Hauschild, J., Höche, H., Gradmann, U., Bethge, H., Heuer, D., and Köhler, U., Phys. Rev. Lett. 73, 898 (1994).Google Scholar
3. Tober, E.D., Ynzunza, R.X., Westphal, C., and Fadley, C.S., Phys. Rev. B 53, 5444 (1996).Google Scholar
4. Knoppe, H. and Bauer, E., Phys. Rev. B 48, 1794 (1993).Google Scholar
5. Mühlig, A., Günther, T., Bauer, A., and Kaindl, G., to be published.Google Scholar
6. Aspelmeier, A., Tischer, M., Farle, M., Russo, M., Baberschke, K., and Arvanitis, D., J. Magn. Magn. Mat. 146, 256 (1995).Google Scholar
7. Fritzsche, H., Kohlhepp, J., and Gradmann, U., Phys. Rev. B 51, 15933 (1995).Google Scholar
8. Bethge, H., Heuer, D., Jensen, Ch., Reshöft, K., and Köhler, U., Surf. Sci. 331–333, 878 (1995).Google Scholar
9. Stindtmann, M., Farle, M., Rahman, T.S., Benabid, L., Baberschke, K., Surf. Sci. (in print).Google Scholar
10. Garreau, G., Farle, M., and Baberschke, K., unpublished.Google Scholar
11. Tersoff, J. and LeGoues, F.K., Phys. Rev. Lett. 72, 3570 (1994).Google Scholar
12. Bergholz, R. and Gradmann, U., J. Magn. Magn. Mater. 45, 389 (1984).Google Scholar
13. Garreau, G., Beaurepaire, E., Ounadjela, K., and Farle, M., Phys. Rev. B 53, 1083 (1996).Google Scholar
14. Duden, T. and Bauer, E., Phys. Rev. Lett. 77, 2308 (1996).Google Scholar
15. Bean, C.P. and Livingston, J.D., J. Appl. Phys. 30, 120S (1959).Google Scholar
16. Paige, D.M., Szpunar, B., and Tanner, B.K., J. Magn. Magn. Mater. 44, 239 (1984).Google Scholar