Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T14:25:49.591Z Has data issue: false hasContentIssue false

Morphology and Low Temperature Electrical Transport in Heteroepitaxial Indium Nitride Films

Published online by Cambridge University Press:  25 February 2011

W. A. Bryden
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723-6099
S. A. Ecelberger
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723-6099
T. J. Kistenmacher
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723-6099
Get access

Abstract

The correlation of low temperature electrical transport with the evolution of heteroepitaxy and morphology for sputtered indium nitride thin films has been studied. A series of indium nitride films were deposited at temperatures ranging from 50 -650 °C by reactive rf magnetron sputtering onto the (00.1) face of sapphire. Above 350 °C, a transition occurs from a continuous morphology, in which grains are in intimate electrical contact, to an open, porous morphology with poor electrical contact. This transition in morphology deeply affects the electrical transport of the semiconductor. At low deposition temperature, the electrical transport is dominated by the relatively weak intergrain scattering leading to films with moderate mobility. As the deposition temperature is raised, the increasingly porous nature of the film leads to a deterioration in electrical mobility. It is proposed here that the relevant physics of these films is analogous to that for granular solids with a distribution of electrical connectivities that suggests a scattering potential dominated by disorder. In fact, the temperature dependence of the resistivity is found to be analogous to that observed in disordered and amorphous materials. In particular, the resistivity is characterized by: 1) A very weak temperature dependence; 2) The observation of a resistance minimum; and, 3) A steep rise in the low temperature (<4K) resistivity that follows a T1/ dependence.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hovel, H. J. and Cuomo, J. J., Appl. Phys. Lett. 20, 71 (1972).Google Scholar
2. Tansley, T. L. and Foley, C. P., Electron. Lett. 20, 1066 (1984); C. P. Foley and T. L. Tansley, Appl. Surf. Sci. 22/23, 663 (1985).Google Scholar
3. Trainor, J. W. and Rose, K., J. Electr. Mat. 3, 821 (1974).Google Scholar
4. Natarajan, B. R., Eltoukhy, A. H., Greene, J. E. and Barr, T. L., Thin Solid Films 68, 201 (1979).Google Scholar
5. Takai, O., Ebisawa, J. and Hisamatsu, Y., Proc. ICVM 7, 137 (1982).Google Scholar
6. Sullivan, B. T., Parsons, R. R., Westra, K. L. and Brett, M. J., J. Appl. Phys. 64, 4144 (1988).Google Scholar
7. Kubota, K., Kobayashi, Y. and Fujimoto, K., J. Appl. Phys. 66, 2984 (1989).Google Scholar
8. Bryden, W. A., Morgan, J. S., Kistenmacher, T. J., Dayan, D., Fainchtein, R. and Poehler, T. O., Mat. Res. Symp. Proc. 162, 567 (1990).Google Scholar
9. Kistenmacher, T. J., Dayan, D., Fainchtein, R., Bryden, W. A., Morgan, J. S. and Poehler, T. O., Mat. Res. Symp. Proc. 162, 573 (1990); J. S. Morgan, T. J. Kistenmacher, W. A. Bryden and T. O. Poehler, Mat. Res. Symp. Proc. 162, 579 (1990).Google Scholar
10. Kistenmacher, T. J., Bryden, W. A., Morgan, J. S., and Poehler, T. O., J. Appl. Phys. 68, 1541 (1990).Google Scholar
11.For a review see: Abeles, B., Appl. Solid State Sci. 6, 1 (1976).Google Scholar
12. Lee, P. A. and Ramakrishnan, T. V., Rev. Mod. Phys. 57, 287 (1985).Google Scholar
13. Rapp, O., Bhagat, S. M. and Gudmundsson, H., Solid State Commun. 42, 741 (1982).Google Scholar
14. Bryden, W. A., Morgan, J. S., Kistenmacher, T. J. and Moorjani, K., J. Appl. Phys. 61, 3661 (1987).Google Scholar