No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
The development of high power devices based on silicon carbide requires a more complete understanding of the oxide formation process and interface characteristics. By using an integrated UHV system, samples were cleaned and oxides deposited in situ. The approach of the oxide formation process was to form the initial insulator, a few angstroms thick, and then deposit an oxide. Various deposition techniques are used in the oxide growth process; both thermal and plasma enhanced chemical vapor deposition were employed with two different precursors (oxygen and nitrous oxide), and the results were compared with thermal oxidation. The morphology of each of the deposited oxides was compared to the bare substrate and the thermal oxide wafers. This study focuses on the morphology of the different deposition processes using AFM. Examination of the morphology of the initial insulator growth process and the oxide deposition process gives insight into the physical characteristics of the silicon dioxide deposited on silicon carbide. The RMS values of the initial insulator formation and the control wafers are 0.93 and 0.95 nm respectively. Meanwhile, the RMS values for PECVD (200–400°C) and thermal CVD (400–600°C for oxygen-silane and 800–1000°C for nitrous oxide-silane) range from 1.43 to 1.93 nm.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.