Published online by Cambridge University Press: 15 February 2011
The effects of instabilities which lead to mound formation and coarsening in homoepitaxial growth on metal (100) surfaces are discussed. These include an instability due to the Ehrlich-Schwoebel step barrier to interlayer diffusion as well as an instability due to step-adatom attraction at ascending steps. A unified picture of the effects of attractive and repulsive interactions at ascending and descending steps on surface morphology and island nucleation is presented. An analytic calculation of the selected mound angle and critical temperature for mound formation as a function of both the Ehrlich-Schwoebel step barrier and the barrier to diffusion towards an ascending step is also presented. Depending on the sign of the step barrier and the magnitude of the prefactor for diffusion over a step various scenarios are possible, including the existence of a critical temperature for mound formation above which (for a positive step barrier) or below which (for a negative step barrier) quasi-layer-by-layer growth will be observed. A theoretical analysis also leads to an accurate prediction of the observed mound angle for Fe/Fe(100) deposition at room temperature. The general dependence of the mound angle, surface skewness, and mound coarsening exponent on temperature, deposition rate, and strength of the step barrier is also studied via kinetic Monte Carlo simulations of bcc(100) growth and compared with recent experiments.