Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T14:04:39.535Z Has data issue: false hasContentIssue false

Moving Photocarrier Grating Technique for Mobility and Lifetime Measurements in Amorphous Semiconductors

Published online by Cambridge University Press:  16 February 2011

M. Hundhausen
Affiliation:
Universität Erlangen, Institut für Technische Physik, D-91058 Erlangen, Germany.
U. Haken
Affiliation:
Universität Erlangen, Institut für Technische Physik, D-91058 Erlangen, Germany.
L. Ley
Affiliation:
Universität Erlangen, Institut für Technische Physik, D-91058 Erlangen, Germany.
Get access

Abstract

In this paper we describe a new method for the determination of the carrier lifetime (r) and the carrier Mobilities (μn, μp) in semiconductors. This technique utilizes a moving intensity grating that is generated by superposition of frequency shifted laser beams for the illumination of the sample. The Material parameters are extracted from the short circuit current in the sample induced by the moving grating as a function of it's velocity (vgr). We solve the continuity equations and Poisson's equation in the small signal approach for the modulated electron and hole densities and show how these densities result in an electric field that in turn acts on the electrons and holes in order to yield a short circuit current density jsc. From a fit of this expression for jsc to experimental data we determine μn, μp and τ.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ritter, D., Zeldov, E., and Weiser, K., Appl. Phys. Lett. 49, 791 (1986).Google Scholar
2. Ritter, D., Zeldov, E., and Weiser, K., J. Appl. Phys. 62, 4563 (1987).Google Scholar
3. Haken, U., Hundhausen, M., and Ley, L., J. Non-cryst. Solids 164–166, 497 (1993).CrossRefGoogle Scholar
4. Haken, U., Hundhausen, M., and Ley, L., Appl. Phys. Lett. 63, 3066 (1993).CrossRefGoogle Scholar
5. Ritter, D., Zeldov, E., and Weiser, K., Phys. Rev. B 38, 8296 (1988).CrossRefGoogle Scholar
6. Li, Y. M., Phys. Rev. B 42, 9025 (1990).Google Scholar
7. Baiberg, I., J. Appl. Phys. 67, 6329 (1990).Google Scholar
8. Hattori, K., Okamoto, H., and Hamakawa, Y., Phys. Rev. B 45, 1126 (1992).Google Scholar
9. Smith, R. A., Semiconductors (Cambridge University Press, Cambridge, 1969), p. 172.Google Scholar
10. Moore, A. R., in Semiconductors and Semimetals, edited by Pankove, J. I. (Academic, New York, 1984), Vol. 21, Pt. C, pp. 239256.Google Scholar