Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-04T04:33:07.094Z Has data issue: false hasContentIssue false

A Multi-Atom, Self-Consistent, Relativistic Kkr Electronic Structure Program: Numerical Aspects and Applications

Published online by Cambridge University Press:  25 February 2011

G. Y. Guo
Affiliation:
Daresbury Laboratory, Science and Engineering Research Council, Warrington WA4 4AD, UK
W. M. Temmerman
Affiliation:
Daresbury Laboratory, Science and Engineering Research Council, Warrington WA4 4AD, UK
Get access

Abstract

A KKR program for self-consistent electronic structure and total energy calculations of complex solids has been developed. This program has been used to study structural, electronic and magnetic properties of a number of solids. In this paper, we give a description of several numerical techniques used in this KKR program which might be of use to other practitioners. We also present some results obtained using this program: c/a ratio of hexagonal Y, elastic constants of Mo, TiC and MgO, and static spin susceptibility of Pd.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Korringa, J., Physica 13, 392 (1947): W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954)Google Scholar
2. Moruzzi, V. L., Janak, J. F. and Williams, A. R., Calculated Electronic Properties of Metals (Pergamon, Oxford, 1978)Google Scholar
3. see, Alloy Phase Stability, edited by Stocks, G. M. and Gonis, A. (Kluwer, Dordrecht, 1989)Google Scholar
4. Newton, R. G., Phys. Rev. Lett. 65, 2031 (1990) and references therein.Google Scholar
5. Lovatt, S. C., Gyorffy, B. L. and Guo, G. Y., (This Proceedings) and references therein.Google Scholar
6. Ham, F. S. and Segall, B., Phys. Rev. 124, 1786 (1961)Google Scholar
7. e.g., Segall, B., Phys. Rev. 105, 108 (1957); J. S. Faulkner, Phys. Rev. B 19, 6186 (1979); P. E. Mijnarends and L. P. L. M. Rabow, J. Phys. F 16, 483 (1986)Google Scholar
8. Mijnarends, P. E. and Bansil, A., J. Phys. C. M. 2, 911 (1990)Google Scholar
9. Avoird, A. Van, Liebmann, S. P. and Fassaert, D. J., Phys. Rev. B 10, 1230 (1974)Google Scholar
10. Davis, H. L., in Computational Methods in Band Theory, edited by Marcus, P. M., Janek, J. F. and Williams, A. R. (Plenum, New York, 1971)Google Scholar
11. Temmerman, W. M. and Szotek, Z., Comp. Phys. Rep. 5, 173 (1987)Google Scholar
12. Hubbard, J. and Mijnarend, P. E., J. Phys. C 5, 2323 (1972)Google Scholar
13. Temmerman, W. M., Sterne, P. A., Guo, G. Y. and Szotek, Z., Molecular Simulation 4, 153 (1989)Google Scholar
14. Yamashita, J. and Asano, S., J. Phys. Soc. Japan 52, 3506 (1983)Google Scholar
15. Chelikowsky, J. R. and Louie, S. G., Phys. Rev. B 29, 3470 (1984)Google Scholar
16. Ginatempo, B., Guo, G. Y., Temmerman, W. M., Staunton, J. B. and Durham, P. J., Phys. Rev. B 42, 2761 (1990)Google Scholar
17. Guo, G. Y., Ebert, H., Temmerman, W. M., Schwarz, K. and Blaha, P., Solid State Commun. 52, 121 (1991)CrossRefGoogle Scholar
18. Koelling, D. D. and Harmon, B. N., J. Phys. C 10, 3107 (1977)Google Scholar
19. Onodera, Y. and Okazaki, M., J. Phys. Soc. Japan 21, 1273 (1966)Google Scholar
20. Temmerman, W. M., 1985 (unpublished)Google Scholar
21. Simmons, G. and Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (M. I. T.Press, London, 1971); K. Y. Sumino, O. L. Anderson and I. Suzuki, Phys. Chem. Minerals 9, 38 (1983).Google Scholar
22. Jarlborg, T. and Freeman, A. J., Phys. Rev. B 23, 3577 (1981)CrossRefGoogle Scholar
23. Winter, H., Stenzel, E., Szotek, Z. and Temmerman, W. M., J. Phys. F 18, 485 (1988)Google Scholar