Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T09:28:34.942Z Has data issue: false hasContentIssue false

Multiple Fano Resonances in Plasmonic Metamaterials Composed of Al/Al2O3 Nanomatryushka Structures

Published online by Cambridge University Press:  30 July 2015

Arash Ahmadivand
Affiliation:
Department of Electrical and Computer Engineering, Florida International University, 10555 W Flagler St., Miami, FL 33174, USA.
Nezih Pala
Affiliation:
Department of Electrical and Computer Engineering, Florida International University, 10555 W Flagler St., Miami, FL 33174, USA.
Get access

Abstract

Metamaterial structures composed of ordered arrays of metallic nanoparticles (NPs) and nanocavities are able to support strong plasmon and Fano resonances in the optical frequencies, where the appeared Fano dips can be utilized in bio/chemical sensing and spectroscopic purposes with a significant sensitivity. Herein, we utilize two concentric compositional Aluminum (Al) nanoshells (Al/Al2O3) to design nanomatryushka (NM) structures in periodic arrays, where each one of Al NPs is covered by a certain thickness of the oxide layer. Depositing studied Al NM arrays on metasurfaces, we determined the optical response of the metamaterial. It is shown that the proposed structure is able to support multiple strong Fano resonances in the visible spectrum. Evaluating the plasmon response of the metamaterial configuration for the presence of various semiconductor metasurfaces (Silicon and GaP), the quality of Fano dips is analyzed for different regimes. In this method, we measured the accuracy and sensitivity of the metamaterial structure by plotting the linear figure of merit (FoM) and quantifying this parameter.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cui, T. J., Smith, D. R., and Liu, R., “Metamaterials: Theory, design and applications,” 1st ed., (Springer, 2010).CrossRefGoogle Scholar
Kabashin, A. V., Evans, P., Pastkovsky, S., Hendren, W., Wurtz, G. A., Atkinson, R., Pollard, R., Podolskiy, V. A., and Zayats, A. V., Nat. Mater., 8, 867871 (2009).CrossRefGoogle Scholar
Alu, A. and Engheta, N., Metamaterials, 4, 153159 (2010).CrossRefGoogle Scholar
Cai, W., Chettriar, U. K., Kildishev, A. V., and Shalaev, V. M., Nat. Photonics, 1, 224227 (2007).CrossRefGoogle Scholar
Ozbay, E., Science, 311, 189193 (2006).CrossRefGoogle Scholar
West, P. R., Ishii, S., Naik, G. V., Emani, N. K., Shalaev, V. M., and Boltasseva, A., Laser Photon. Rev., 4, 795808 (2010).CrossRefGoogle Scholar
Knight, M. W., King, N. S., Liu, L., Everitt, H. O., Nordlander, P., and Halas, N. J., ACS Nano, 8 (2014).CrossRefGoogle Scholar
Ahmadivand, A. and Golmohammadi, S., Opt. Commun., 310, 111 (2014).CrossRefGoogle Scholar
Bardhan, R., Mukherjee, S., Mirin, N. A., Levit, S. D., Nordlander, P. and Halas, N. J., J. Phys. Chem. C, 114, 73787383 (2009).CrossRefGoogle Scholar
Ahmadivand, A. and Pala, N., Plasmonics, (2015) (in press).Google Scholar
Prodan, E., Radloff, C., Halas, N. J., and Nordlander, P., Science, 302, 419422 (2003).CrossRefGoogle Scholar
Knight, M. W., Liu, L., Wang, Y., Brown, L., Mukherjee, S., King, N. S., Everitt, H. O., Nordlander, P., and Halas, N. J., Nano Lett., 12, 60006004 (2012).CrossRefGoogle Scholar
Lassiter, J. B., Aizpurua, J., Hernandez, L. I., Brandl, D. W., Romero, I., Lal, S., Hafner, J. H., Nordlander, P., and Halas, N. J., Nano Lett., 8, 12121218 (2008).CrossRefGoogle Scholar