Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T06:24:50.419Z Has data issue: false hasContentIssue false

Multitechnique Approach to Understanding the Microstructure of Cement-Based Systems

Published online by Cambridge University Press:  21 February 2011

David L. Cocke
Affiliation:
Gill Chair of Analytical Chemistry, Lamar University, Beaumont, TX 77710
A. Mollah
Affiliation:
Visiting Professor, Department of Chemistry, Dhaka University, Bangladesh
Get access

Abstract

The chemistry of cement, its hydration and the development of microstructure in cement-based systems is extremely complex, and it becomes even more complex in the presence of additives. The elucidation of the mechanisms of these processes is a challenging problem and requires the applications of multiple techniques including the latest microscopic methods. The applications of molecular spectroscopies, surface spectroscopies and microscopies have helpeddevelop models and mechanisms for the retardation of cement setting by Zn, Cd and Pb, the chemical and structural effects of superplasticizers, and the interaction of hydrating cement with aggregates, selective sorbents and fillers. The results of these studies indicated that the inhibition of hydration is controlled by dispersion of various charges present in hyperalkaline solution in cement paste. According to this charge dispersal model, the Ca2+ ions from initial hydration form a tightly-bound bilayer with the negatively charged C-S-H surface. Consequent to this intrinsic process, the metalhydroxy or superplasticizer anions immediately surround the bilayer to constitute a trilayer which inhibits further hydration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cocke, D. L. and Mollah, M. Y. A., in Chemistry and Microstructure of Solidified Waste Forms, edited by Spence, R. D. (Lewis publishers, U. S. A.,1992), p.187.Google Scholar
2. Barnes, J. R., Clague, A. D. H., Clayden, N. J., Dobson, C. M., Hayes, C. J., G.W. Groves and Rodger, S. A. J., Mater. Sci. Letter. 4, 1293 (1985).Google Scholar
3. Lippmaa, E., Magi, M., Tarmak, M., Wieker, W. and Grimmer, A., Cemt.Concr. Res. 12, 597 (1982).Google Scholar
4. Clayden, N. J., Dobson, C. N., Hayes, C. A. and Rodger, S. A., Chem. Soc. Chem. Commun. 1396 (1984).Google Scholar
5. Briggs, D. and Seah, M. P., Practical Surface Analysis, (Wiley, New York, 1983).Google Scholar
6. Cocke, D. L., Vempati, R. K. and Loeppert, R. L., in Quantitative Methods in Soil Mineralogy. ed. Amonnette, J. (Agronomy Soc. of Am. Monograph Ser., 1994), p. 205.Google Scholar
7. Hochella, M. F. Jr., in Spectroscopic Methods in Mineralogy and Geoloy, edited by Hawthorn, F. C. (Reviews in Mineralogy, Min. Soc. Am., Washinton D. C, 1988), p. 573.Google Scholar
8. Cocke, D. L., McWhinney, H. G., Dufner, D. C., Horrell, B. and Ortego, J. D., Hazardous Waste and Hazardous Materials. 6, 251 (1989).Google Scholar
9. McWhinney, H. G., Cocke, D. L., Balke, K. G. and Ortego, J. D., Cemt. Concr. Res. 20(1), 79 (1990).Google Scholar
10. McWhinney, H. G., Rowe, M. W., Ortego, J. D., Cocke, D. L., and Yu, G-S., Environ. Sci. and Health. A25(5), 463(1990).Google Scholar
11. Mollah, M. Y. A., Tsai, Y. N., Hess, T. R. and Cocke, D. L., J. Hazardous Materials. 30, 273 (1992).Google Scholar
12. Mindess, S. and Young, J. F., Concretre. (Prentice Hall, N. J., 1981), p. 671.Google Scholar
13. Baird, T. G., Cairns-Smith, A. G. and Snell, D. S., J. Colloid Interface Sci. 50, 387 (1975).Google Scholar
14. Slegers, P. A. and Rouxhet, P. G., Cemt. Concr. Res. 6, 700 (1976).Google Scholar
15. Mollah, M. Y. A., Parga, J. R. and Cocke, D. L., J. Environ. Sci. & Health. 27 A (6), 1503 (1992).Google Scholar
16. Federal register (No. 114, Friday, June 13, 1982), 51, 21672 (1986)Google Scholar
17. Taylor, H. F. W., Cement Chemnistry. 1st ed. (Academic Press, New York, 1990).Google Scholar
18. Mollah, M. Y. A., Palta, P., Hess, T. R., Vempati, R. K. and Cocke, D. L., Cemt. Concr. Res. (1994, Submitted).Google Scholar
19. Mollah, M. Y. A., Hess, T. R., Tsai, Y. N., and Cocke, D. L., Cemt. Concr. Res. 23, 773 (1993).Google Scholar
20. Mollah, M. Y. A., Tsai, Y. N., Hess, T. R. and Cocke, D. L., J. Environ. Sci. & Health. 27 (5), 1213(1992).Google Scholar
21. Cocke, D. L., Vempati, R. K., Mollah, M. Y. A., Hess, T. R. and Chintala, A.K., Proceedings of the 207th ACS National Meeting, San Diego, USA, March 13-18. 34(1), 222 (1994).Google Scholar
22. Mollah, M.Y. A., Vempati, R. K. and Cocke, D. L., Waste Management, Submitted (1994).Google Scholar
23. Cocke, D. L., Mollah, M. Y. A., Parga, J. R., Hess, T. R. and Ortego, J. D., J. Hazardous Materials. 30, 83 (1992).Google Scholar
24. McWhinney, H. G. and Cocke, D. L., Waste Management, 13, 117 (1993).Google Scholar
25. Mollah, M. Y. A., Hess, T. R. and Cocke, D. L., J. Hazardous Materials. 30, 273 (1992).Google Scholar
26. Cocke, D. L., McWhinney, H. G., Dufner, D. C., Horrel, B. and Ortego, J. D., Hazard. Waste Hazard. Mater. 6(3), 252 (1989).Google Scholar