Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T01:13:13.415Z Has data issue: false hasContentIssue false

Multivalent Biomimetic Glyconanoparticle Platforms as QCM Amplifiers for Lectin-carbohydrate Interactions

Published online by Cambridge University Press:  01 February 2011

Eugene Mahon
Affiliation:
mahon@iemm.univ-montp2.fr, IEM, Montpellier, France
Teodor Aastrup
Affiliation:
teodor.aastrup@attana.com, ATTANA AB, Stockholm, Sweden
Mihail Barboiu
Affiliation:
mihai.barboiu@iemm.univ-montp2.fr, Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems, Place Eugene Bataillon CC047, Montpellier, 34095, France
Get access

Abstract

The Lectin-Carbohydrate interaction was investigated by combining the Quartz Crystal Microbalance-QCM technique with signal amplifying biomimetic nanoparticle-NP platforms. A library of glyconanoparticles was prepared and the avidity of these NPs for immobilised lectin layers was then evaluated by a QCM setup. Large responses were observed as a result of surface recognition by nanoparticles displaying the appropriate molecular functionality. Large affinity enhancements were also in evidence due to the biomimetic nature of the glyconanoparticle assemblies' carbohydrate presentation demonstrating evidence of the cluster glycoside effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Dwek, R. A., Chem. Rev. 96, 683720 (1996).Google Scholar
2 Gabius, H. J., Naturwissenschaften 87, 108121 (2000).Google Scholar
3 Bourne, Y., Vantilbeurgh, H., ; Cambillau, C. Curr. Opin. Struct. Biol. 3, 681686 (1993).Google Scholar
4 Rojo, J., Morales, J. C., Penades, S., Carbohydrate-carbohydrate interactions in biological and model systems. Host-Guest Chemistry (Springer-Verlag Berlin, 2002), 218, pp. 4592.Google Scholar
5 Sharon, N., Lis, H., Science 246, 227234 (1989).Google Scholar
6 Ashwell, G., Harford, J., Annu. Rev. Biochem. 51, 531554 (1982).Google Scholar
7 Sharon, N., FEBS Lett. 217, 145157 (1987).Google Scholar
8 Melrose, J., Tsurushita, N., Liu, G., Berg, E. L., J. Immunol. 161, 24572464 (1998).Google Scholar
9 Watanabe, N., Kawashima, H., Li, Y. F., Miyasaka, M., J. Biochem. 125, 826831 (1999).Google Scholar
10 Weis, W. I., Drickamer, K., Annu. Rev. Biochem. 65, 441473 (1996).Google Scholar
11 Lis, H., Sharon, N., Chem. Rev. 98, 637674 (1998).Google Scholar
12 Davis, B. G., Chem. Rev. 102, 579601 (2002).Google Scholar
13 Pei, Y. X., Yu, H., Pei, Z. C., Theurer, M., Ammer, C., Andre, S., Gabius, H. J., Yan, M. D., Ramstrom, O., Anal. Chem. 79, 68976902 (2007).Google Scholar
14 Huang, M. C., Shen, Z. H., Zhang, Y. L., Zeng, X. Q., Wang, P. G., Bioorg. Med. Chem. Lett. 17, 53795383 (2007).Google Scholar
15 Mahon, E., Aastrup, T., Barboiu, M., Chem. Commun. 2010, DOI; 10.1039/b924766a.Google Scholar
16 Lyu, Y. K., Lim, K. R., Lee, B. Y., Lee, W. Y., Chem. Commun., 4771-4773 (2008).Google Scholar
17 Schofield, C. L., Haines, A. H., Field, R. A., Russell, D. A., Langmuir 22, 67076711 (2006).Google Scholar
18 Mielczarski, J. A., Dong, J., Mielczarski, E., J. Phys. Chem. B, 112, 52285237 (2008).Google Scholar
19 Masel, R. I., In Principles of Adsorption and Reaction on Solid Surfaces (Wiley-1996) p. 239.Google Scholar
20 Ooya, T., Utsunomiya, H., Eguchi, M., Yui, N., Bioconjugate Chem. 16, 6269 (2005).Google Scholar
21 Lin, C.C., Yeh, Y.C., Yang, C.Y., Chen, G.F., C.C.; Chen, Chem. Commun. 29202921 (2003).Google Scholar
22 Smith, E. A., Kiessling, L. L., Corn, R. M., J. Am. Chem. Soc. 125, 61406148 (2003).Google Scholar
23 Katzen, H. M., J. Biol. Chem. 254, 29832992 (1979).Google Scholar
24 Sato, K., Kodama, D., J. Anzai, Anal. Sci. 21, 13751378 (2005).Google Scholar
25 Oda, Y., Kasai, K., Ishii, S., J. Biochem. 89, 285296 (1981).Google Scholar
26 Bouckaert, J., Hamelryck, T. W., Loris, R., J. Biol. Chem. 274, 2918829195 (1999).Google Scholar
27 Horan, N., Yan, L., Isobe, H., Whitesides, G. M., Kahne, D., Proc. Natl. Acad. Sci. 96, 1178211786 (1999).Google Scholar
28 Mammen, M., Choi, S. K., Whitesides, G. M., Angew.Chem. Int. Ed. 37, 27552794 (1998).Google Scholar
29 Kitov, P. I., Bundle, D. R., J. Am. Chem. Soc. 125, 1627116284 (2003).Google Scholar
30a) Dumitru, F., Petit, E., Lee, A. van der, Barboiu, M., Eur. J. Inorg. Chem., 4255–4262 (2005); b) Y.M. Legrand, A. van der Lee, M. Barboiu, Inorg. Chem., 46, 9540-9547 (2007); c) F. Dumitru, Y.M. Legrand, A. van der Lee, M. Barboiu, Chem. Commun, 2667-2669 (2009); d) M. Barboiu, F. Dumitru, Y.-M. Legrand, E. Petit, A. van der Lee, Chem. Commun, 2192-2194 (2009); e) A. Cazacu, Y.M. Legrand, A. Pasc, G. Nasr, A. van der Lee, M. Barboiu, Proc. Natl. Acad. Sci.,106(20), 8117-8122 (2009); f) C. Arnal-Herault, M. Michau, A. Pasc-Banu, M. Barboiu, Angew. Chem. Int. Ed., 46, 4268-4272 (2007); g) C. Arnal-Herault, A. Pasc-Banu, M. Michau, D. Cot, E. Petit, M. Barboiu, Angew. Chem. Int. Ed., 46, 8409-8413 (2007); h) C. Arnal-Hérault, M. Barboiu, A. Pasc, M. Michau, A. van der Lee, Chem. Eur. J., 13, 6792-6800 (2007) i) J. Nasr, M. Barboiu, T. Ono, S. Fujii, J.-M. Lehn, J. Membr. Sci., 321, 8-14 (2008); j) M. Michau, R. Caraballo, C. Arnal-Hérault, M. Barboiu, J. Membr. Sci. 321, 22-30 (2008).Google Scholar