Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T00:58:01.402Z Has data issue: false hasContentIssue false

Multiwall Carbon Nanotubes by Hydrothermal Treatment

Published online by Cambridge University Press:  15 March 2011

Jose M. Calderon-Moreno
Affiliation:
Center of Materials Design, Tokyo Institute of Technology Nagatsuta 4259, Midori-ku, 226-8503 Yokohama, Japan
Masahiro Yoshimura
Affiliation:
Center of Materials Design, Tokyo Institute of Technology Nagatsuta 4259, Midori-ku, 226-8503 Yokohama, Japan
Get access

Abstract

Multiwall carbon nanotubes have been obtained from carbon soot after hydrothermal treatment at 800°C and 100 MPa. High-resolution electron microscopy (HRTEM) study reveals multiwall carbon nanotubes and carbon nanoparticles made of a hollow core enclosed in well-ordered concentric graphitic layers after hydrothermal treatment. Condensed solid products are free of the amorphous phase. Micro-Raman spectroscopy reveals that the hydrothermal multiwall nanotubes have a characteristic perfectly closed graphitic lattice in the basal plane, without edges or plane terminations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, S., Nature, 354, 56 (1991).Google Scholar
2. Baird, T., Fryer, J. R., Grant, B., Nature, 233, 329 (1971).Google Scholar
3. Tibbet, G. G., J. Cryst. Growth, 66, 632 (1984).Google Scholar
4. Yacaman, M. J., Yoshida, M. Miki, Rendan, L., Santiesteban, J. G., Appl. Phys. Lett., 62, 657 (1993)Google Scholar
5. Ivanov, V. et al. Carbon, 33, 1727 (1995).Google Scholar
6. Blank, V. D. et al. Carbon, 38, 1217 (2000)Google Scholar
7. Tohji, K. et al. , Nature, 383, 679 (1996).Google Scholar
8. Liu, J. et al. , Science, 280, 1253 (1998).Google Scholar
9. Moreno, J. M. Calderon, Fujino, T., Yoshimura, M., Carbon, 39, 618 (2001).Google Scholar
10. Moreno, J. M. Calderon, Swamy, S. S., Fujino, T., Yoshimura, M., Chem. Phys. Lett., 329, 317 (2000).Google Scholar
11. Moreno, J. M. Calderon, Yoshimura, M., J. Am. Chem. Soc. 123, 741 (2001).Google Scholar
12. , Dresselhaus, Dresselhaus, M. S., Pimenta, G., Eklund, M. A., P. C., in Analytical Applications of Raman Spectroscopy, Chapter 9, Pelletier, M. J., Blackwell Science, Oxford, (1999).Google Scholar
13. Chapell, Lamy de la, Lefrant, M., Journet, S., Maser, C., Bernier, W., P. Carbon, 36, 705 (1998).Google Scholar
14. Kasuya, A., Sasaki, Y. Phys. Rev. Lett., 78, 44347 (1997).Google Scholar
15. , Tuinstra, Koening, F., J. L. J. Chem. Phys., 53, 1126 (1970).Google Scholar
16. Swamy, S. S., Calderon-Moreno, J. M., Yoshimura, M., J. Mat. Res., 16, in press (1999).Google Scholar