Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T08:44:46.605Z Has data issue: false hasContentIssue false

&[mu]-Watt Enhanced Electroluminescent Power of Silicon Nanocrystal Light-Emitting Diodes Made on Nano-Scale Silicon-Tip-Array Substrate

Published online by Cambridge University Press:  01 February 2011

Gong-Ru Lin
Affiliation:
grlin@ntu.edu.tw, Institute of Electro-Optical Engineering and Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan, 886-2-33663700 ext 235, 886-2-33669598
Chun-Jung Lin
Affiliation:
knoxlin.eo91g@nctu.edu.tw, National Chiao Tung University, Department of Photonics and Institute of Electro-Optical Engineering, No. 1001, Ta Hsueh Road, Hsinchu, 300, Taiwan
Get access

Abstract

A Si nanocrystal based metal-oxide-semiconductor light-emitting diode (MOSLED) on Si nano-pillar array is preliminarily demonstrated. Rapid self-aggregation of Ni nanodots on Si substrate covered with a thin SiO2 buffered layer is employed as the etching mask for obtaining Si nano-pillar array. Dense Ni nanodots with size and density of 30 nm and 2.8×10 cm-2, respectively, can be formatted after rapid thermal annealing at 850°C for 22 s. The nano-roughened Si surface contributes to both the relaxation of total-internal reflection at device-air interface and the Fowler-Nordheim tunneling enhanced turn-on characteristics, providing the MOSLED a maximum optical power of 0.7 uW obtained at biased current of 375 uA. The optical intensity, turn-on current, power slope and external quantum efficiency of the MOSLED are 140 μW/cm2, 5 uA, 2+-0.8 mW/A and 1×10-3, respectively, which is almost one order of magnitude larger than that of a same device made on smooth Si substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Iwayama, T. S., Kurumado, N., Hole, D. E. and Townsend, P. D., J. Appl. Phys. 83, 6018 (1998).Google Scholar
2 Garrido, B., López, M., González, O., Pérez-Rodríguez, A. and Morante, J. R., Appl. Phys. Lett. 77, 3143 (2000).Google Scholar
3 Iacona, F., Bongiorno, C., Spinella, C., Boninelli, S. and Priolo, F., J. Appl. Phys. 95, 3723 (2004).Google Scholar
4 Cho, Kwan Sik, Park, Nae-Man, Kim, Tae-Youb, Kim, Kyung-Hyun, Sung, Gun Yong and Shin, Jung H., Appl. Phys. Lett. 86, 071909 (2005).Google Scholar
5 Luterová, K., Pelant, I., Valenta, J., Rehspringer, J. L., Muller, D., Grob, J. J., Dian, J. and Hönerlange, B., Appl. Phys. Lett. 77, 2952 (2000).Google Scholar
6 Lin, G.-R., Lin, C. J., Lin, C. K., Chou, L. J. and Chueh, Y. L., J. Appl. Phys. 97, 094306 (2005).Google Scholar
7 Francois, M., Danlot, J., Grimbert, B., Mounaix, P., Muller, M., Vanbesien, O. and Lippens, D., Microelectron. Eng. 61, 537 (2002).Google Scholar
8 Fischer, P. B., Dai, K., Chen, E. and Chou, S. Y., J. Vac. Sci. Technol. B 11, 2524 (1993).Google Scholar
9 Fowler, R. H. and Nordheim, L. W., Proc. R. Soc. London, Ser. A 119, 173 (1928).Google Scholar
10 Fujii, T., Gao, Y., Sharma, R., Hu, E. L., DenBaars, S. P. and Nakamura, S., Appl. Phys. Lett. 84, 855 (2004).Google Scholar
11 Huang, H. W., Kao, C. C., Chu, J. T., Yu, C. C., Kuo, H. C. and Wang, S. C., IEEE Photonics Technol. Lett. 17, 5 (2005).Google Scholar