Published online by Cambridge University Press: 01 February 2011
Based on a small set of selected publications on the using of nanocrystalline silicon films (nc-Si) for solar cell from 1997 to 2001, this paper reviews the application of nc-Si films as intrinsic layers in p-i-n solar cells. The new structure of nc-Si films deposited at high chamber pressure and high hydrogen dilution have characters of nanocrystalline grains with dimension about several tens of nanometer embedded in matrix of amorphous tissue and a high volume fraction of crystallinity (60~80%). The new nc-Si material have optical gap of 1.89 eV. The efficiency of this single junction solar cell reaches 8.7%. This nc-Si layer can be used not only as an intrinsic layer and as a p-type layer. Also nanocrystalline layer may be used as a seed layer for the growth of polycrystalline Si films at a low temperature.
We used single ion beam sputtering methods to synthesize nanocrystalline silicon films successfully. The films were characterized with the technique of X-ray diffraction, Atomic Force Micrographs. We found that the films had a character of nc-amorphous double phase structure. Conductivity test at different temperatures presented the transportation of electrons dominated by different mechanism within different temperature ranges. Photoconductivity gains of the material were obtained in our recent investigation.