Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T14:19:01.529Z Has data issue: false hasContentIssue false

Nanocrystalline Solutions as Precursors to The Spray Deposition of Cdte Thin Films

Published online by Cambridge University Press:  15 February 2011

Martin Pehnt
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden CO 80401-3393
Douglas L. Schulz
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden CO 80401-3393
Calvin J. Curtis
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden CO 80401-3393
Helio R. Moutinho
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden CO 80401-3393
Amy Swartzlander
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden CO 80401-3393
David S. Ginley
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden CO 80401-3393
Get access

Abstract

In this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ferekides, C., Britt, J., Ma, Y. and Killian, L., Proc. 23rd IEEE PVSC 389 (1993).Google Scholar
2. Woodcock, J. M., Turner, A. K., Ozsan, M. E. and Summers, J. G., Proc. 22nd IEEE PVSC 842 (1991).Google Scholar
3. Seol, Y. S. and Im, H. B., Proc. 9th EC PVSEC 294 (1989).Google Scholar
4. Skafarman, W. N., Birkmire, R. W., Fardig, D. A., McCandless, B. E., Mondal, A., Phillips, J. E. and Varrin, R. D., Solar Cells 30, 61 (1991).Google Scholar
5. Boone, J. L., Doren, T. P. v. and Berry, A. K., Thin Solid Films 87, 259 (1982).Google Scholar
6. Feldman, B. J., Boone, J. L. and Doren, T. v., Appl. Phys. Lett. 38, 703 (1981).Google Scholar
7. Albright, S. P., Jordan, J. F., Ackermann, B. and Chamberlin, R. R., Solar Cells 27, 77 (1989).Google Scholar
8. Brus, L., J. Phys. Chem. 90, 2555 (1986).Google Scholar
9. Wang, Y. and Herron, N., J. Phys. Chem. 95, 525 (1991).Google Scholar
10. Weller, H., Adv. Mater. 5, 88 (1993).Google Scholar
11. Bawendi, M. G., Steigerwald, M. L. and Brus, L. E., Annu. Rev. Phys. Chem. 41,477 (1990).Google Scholar
12. Henglein, A., Chem. Rev. 89, 1861 (1989).Google Scholar
13. Beck, D. D. and Siegel, R. W., J. Mater. Res. 7, 2840 (1992).Google Scholar
14. Richtsmeier, S. C., Parks, E. K., Liu, K., Pobo, L. G. and Riley, S. J., J. Chem. Phys. 82, 3659 (1985).Google Scholar
15. Wang, Y. and Mahler, W., Opt. Commun. 61, 233 (1987).Google Scholar
16. Banyai, L., Hu, Y. Z., Lindberg, M. and Koch, S. W., Phys. Rev. B 38, 8142 (1988).Google Scholar
17. Ricard, D., Roussignol, P., Hache, F. and Flytzanis, C., phys. stat. sol. (b) 159, 275 (1990).Google Scholar
18. Alfassi, Z., Bahnemann, D. and Henglein, A., J. Phys. Chem. 86,4656 (1982).Google Scholar
19. Haase, M., Weller, H. and Henglein, A., Ber. Bunsen-Ges. Phys. Chem. 92, 1103 (1988).Google Scholar
20. Goldstein, A. N., Echer, C. M. and Alivisatos, A. P., Science 256, 1425 (1992).Google Scholar
21. Andres, R. P., Averback, R. S., Brown, W. L., Brus, L. E., Goddard, W. A., Kaldor, A., Louie, S. G., Moscovits, M., Peercy, P. S., Riley, S. J., Siegel, R. W., Spaepen, F. and Wang, Y., J. Mater. Res. 4, 704 (1989).Google Scholar
22. Buffat, P. and Borel, J.-P., Phys. Rev. A 13, 2287 (1976).Google Scholar
23. Chemseddine, A., Chem. Phys. Lett. 216, 265 (1993).Google Scholar
24. Chemseddine, A. and Fearheiley, M. L., Thin Solid Films 247, 3 (1994).Google Scholar
25. Alivisatos, A. P. and Goldstein, A. N., United States Patent 5 (1993).Google Scholar
26. Brennan, J. G., Siegrist, T., Carroll, P. J., Stuczynski, S. M., Reynders, P., Brus, L. E. and Steigerwald, M. L., Chem. Mater. 2,403 (1990).Google Scholar
27. Stuczynski, S. M., Brennan, J. G. and Steigerwald, M. L., Inorg. Chem. 28, 4431 (1989).Google Scholar
28. Mtillenborn, M., Jarvis, R. F., Yacobi, B. G., Kaner, R. B., Coleman, C. C. and Haegel, N. M., Appl. Phys. A 56, 3217 (1993).Google Scholar
29. Jarvis, R. F., Muillenborn, M., Yacobi, B. G., Haegel, N. M. and Kaner, R. B., Mat. Res. Soc. Symp. Proc. 272, 229 (1992).Google Scholar
30. Resch, U., Weller, H. and Henglein, A., Langmuir 5, 1015 (1989).Google Scholar
31. Raijh, T., Micic, O. I. and Nozik, A. J., J. Phys. Chem. 97, 11999 (1993).Google Scholar
32. Murray, C. B., Norris, D. J. and Bawendi, M. G., J. Am. Chem. Soc. 115, 8706 (1993).Google Scholar
33. Cullity, B. D., Elements of X-ray Diffraction (Addison-Wesley, Reading, 1978).Google Scholar
34. The zero point of the second derivative of the absorbance curve was used to determine the wavelength of the excitonic transition.Google Scholar
35. Lippens, P. E., Semicond. Sci. Technol. 6, A157 (1991).Google Scholar
36. Pehnt, M., Schulz, D. L., Curtis, C. J., Jones, K. M. and Ginley, D. S., “Nanoparticle precursor route to low temperature spray deposition of CdTe thin films” (submitted to Nature).Google Scholar
37. Lippens, P. E. and Lannoo, M., Phys. Rev. B 39, 10935 (1989).Google Scholar
38. Weller, H., Angew. Chem. Int. Ed. Engl. 32, 41 (1993).Google Scholar
39. Moutinho, H. R., Hasoon, F. S. and Kazmerski, L. L., Progress in Photovoltaics: Research and Applications 3, 39 (1995).Google Scholar