Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-11T03:13:02.405Z Has data issue: false hasContentIssue false

Nanodiamond Particles in Electronic and Optical Applications

Published online by Cambridge University Press:  31 January 2011

Olga Shenderova
Affiliation:
oshenderova@itc-inc.org
Suzanne Ciftan Hens
Affiliation:
shens@itc-inc.org, International Technology Center, Raleigh, North Carolina, United States
Igor Vlasov
Affiliation:
vlasov@nsc.gpi.ru, General Physics Institute, Russian Academy of Sciences, Moscow, Russian Federation
Vesna Borjanovic
Affiliation:
vborjanovic@itc-inc.org, International Technology Center, Raleigh, North Carolina, United States
Gary McGuire
Affiliation:
gmcguire@itc-inc.org, International Technology Center, Raleigh, North Carolina, United States
Get access

Abstract

Current use of nanodiamond (ND) particles in electronic-related applications is mostly restricted to their role in seeding of substrates for growth of diamond films by chemical vapor deposition (CVD). While it is a niche application, nanometer-sized diamond particles are indispensable in this role. Seeding of substrates using a novel slurry of detonation nanodiamond particles in dimethylsulfoxide (DMSO) and methanol is one of the topics of this article. At the same time, optical applications of NDs, particularly development of photoluminescent NDs for biomedical applications is one of the most popular current research topics. In this paper perspectives for the use of detonation NDs and specifically the role of surface functionalization in imparting photoluminescent properties to detonation NDs as well as enhanced photoluminescence of proton irradiated ND-polydimethylsiloxane composites are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Williams, O.A., Douheret, O., Daenen, M., Haenen, K., Osawa, E., and Takahashi, M. (2007) Chem. Phys. Let. 445, 255258.Google Scholar
2 Alimova, A.N., Chubun, N.N., Belobrov, P.I., Detkov, P.Y., and Zhirnov, V.V. (1999) J. Vac. Sci. Tech. B 17, 715718.Google Scholar
3 Ay, A., Swope, V. M., Swain, G. M., J. Electrochem. Soc., (2008), 155, 10, B1013–B1022.Google Scholar
4 Shenderova, O., Hens, S.C., Diam. Relat. Mat. In press.Google Scholar
5 Schrand, A. M., Hens, S.C., Shenderova, O. A. Crit. Rev. Sol. St. Mat. Sci. (2009), 34, 18.Google Scholar
6 Zhitomirsky, I. (1998) Mater. Lett. 37, 7278.Google Scholar
7 Hens, S.C., Cunningham, G., Tyler, T., Moseenkov, S., Kuznetsov, V., and Shenderova, O. (2008) Diam. Relat. Mat. 171, 18581866.Google Scholar
8 Hughes, M.P. (2000) Nanotechnology 11, 124132.Google Scholar
9 Smith, B.R., Niebert, M., Plakhotnik, T., and Zvyagin, A.V., (2007) J. Lumines., 127, 260.Google Scholar
10 Perevedentseva, E., Cheng, C.Y., Chung, P.H., Tu, J.S., Hsieh, Y.H., and Cheng, C.L., (2007) Nanotechnology, 18, 315102.Google Scholar
11 Shenderova, O., Grichko, V., Hens, S., and Walsh, J. (2007) Diam. Relat. Mat. 16, 2003.Google Scholar
12 Grichko, V., Tyler, T., Grishko, V., Shenderova, O. (2008) Nanotechnology 19, 225201.Google Scholar
13 Boudou, J.-P., Curmi, P. A, Jelezko, F., Wrachtrup, J., Auber, P.; Sennour, M., Balasubramanian, G., Reuter, R., Thorel, A., Gaffet, E., (2009) Nanotechnology 20, 235602.Google Scholar
14 Shenderova, O., Hens, S.C., chapter 4 in book (2010) Nanodiamonds: Applications Toward Biology and Nanoscale Medicine, Springer-Verlag, ed. by Ho, Dean.Google Scholar
15 Mochalin, V. N., and Gogotsi, Y., (2009) J. Am. Chem. Soc. 131, 45944595.Google Scholar
16 Borjanovic, V., Lawrence, W.G., Hens, S., Jaksic, M., Zamboni, I., Edson, C., Vlasov, V., Shenderova, O., and McGuire, G. (2008) Nanotechnology, 19, 45, 455701.Google Scholar
17 Shenderova, O., Petrov, I., Walsh, J., Grichko, V., Grishko, V., Tyler, T., and Cunningham, G. (2006) Diam. Relat. Mat. 15, 17991803.Google Scholar
18 Petrov, I., Shenderova, O., Grishko, V., Grichko, V., Tyler, T., Cunningham, G., and McGuire, G. (2007) Diam. Relat. Mat. 16, 20982103.Google Scholar
19 Fawcett, W. R., (2004) Liquids, Solutions, and Interfaces, Oxford.Google Scholar
20 Chang, Y.-R., Lee, H.-Y., Chen, K., Chang, C.-C., Tsai, D.-S., Fu, C.-C., Lim, T.-S., Tzeng, Y.-K., Fang, C.-Y., Han, C.-C. Chang, H.-C., Fann, W., Nat. Nanotechnol. 2008, 3, 284288.Google Scholar
21 O, Turner, Lebedev, I. , I., Shenderova, O., Vlasov, I., Veerbeck, J., Van, Tendeloo G. (2009) Adv. Funct. Mater. 19, 19.Google Scholar
22 Vlasov, I., Shenderova, O., Turner, S., Lebedev, O. I., Basov, A.A., Sildos, I., Rdhn, M., Shiryaev, A. and Tendeloo, G. Van, Small, 2009, in pressGoogle Scholar
23 Cai, K. F., Zhang, A. X., Yin, J. L., Wang, H. F., Yuan, X. H. (2008) Appl. Phys. A 91, 579584.Google Scholar
24 Borjanović, V., Bistričić, L., Vlasov, I., Furić, K., Zamboni, I., Jakšić, M., Shenderova, O. (2009) J. Vac. Sci. Tech. B 27, 6, 23962403.Google Scholar