Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-14T05:02:23.405Z Has data issue: false hasContentIssue false

Nanofractography Of Composition B Fracture Surfaces with AFM

Published online by Cambridge University Press:  01 February 2011

Y. D. Lanzerotti
Affiliation:
U. S. Army ARDEC, Picatinny Arsenal, NJ 07806–5000
J. Sharma
Affiliation:
Naval Surface Warfare Center, Carderock Division, West Bethesda MD 20817–5700
R. W. Armstrong
Affiliation:
AFRL-MNME, 2306 Perimeter Rd., Eglin AFB, FL 34542–5910
R. L. McKenney
Affiliation:
AFRL-MNME, 2306 Perimeter Rd., Eglin AFB, FL 34542–5910
T. R. Krawietz
Affiliation:
AFRL-MNME, 2306 Perimeter Rd., Eglin AFB, FL 34542–5910
Get access

Abstract

The characteristics of TNT (trinitrotoluene) crystals in the fracture surface of Composition B (a melt-cast mixture of TNT and RDX) have been studied using atomic force microscopy (AFM). The size of TNT crystals has been examined by analyzing the surface structure that is exhibited after mechanical failure of the Composition B. The failure occurs when the material is subjected to high acceleration in an ultracentrifuge and the shear or tensile strength is exceeded. AFM examination of the topography of the Composition B fracture surface reveals fracture across columnar grains of the TNT. The width of the columnar TNT grains ranges in size from ∼ 1 μm to ∼ 2 μm. Their height ranges in size from ∼ 50 nm to ∼ 300 nm. Flat TNT columns alternate with TNT columns containing river patterns that identify the direction of crack growth. Steps in the river patterns are a few nanometers in depth. The TNT constitutent fracture surface morphology is shown to occur on such fine scale, beginning from adjacent columnar crystals only 1–2 μm in width, and including river marking step heights of only a few nanometers, that AFM-type resolution is required.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lanzerotti, Y. D. and Sharma, J., Appl. Phys. Lett. 39, 455 (1981)‥Google Scholar
2. Lanzerotti, Y. D. and Sharma, J. in Grain-Size and Mechanical Properties - Fundamentals and Applications, edited by Otooni, M. A., Armstrong, R. W., Grant, N. J. and Ishizaki, K. (Mat. Res. Soc. Proc. 362, Pittsburgh, PA, 1995) pp. 131134.Google Scholar
3. Lanzerotti, Y. D. and Sharma, J. in Shock Compression of Condensed Matter – 1997, edited by Schmidt, R. D., Dandekar, D. P. and Forbes, J. W. (Am. Inst. of Physics Conf. Proc. 429, New York, 1998) pp. 595597.Google Scholar
4. Lanzerotti, Y. D. and Sharma, J. in Shock Compression of Condensed Matter - 2001, edited by Furnish, M. D., Thadhani, N.N. and Horie, Y. (Am. Inst. of Physics Conf. Proc. 620, Melville, New York, 2002) pp. 853855 Google Scholar
5. Lanzerotti, Y. D., Pinto, J. and Wolfe, A. in Proc. Ninth Symposium (International) on Detonation (Office of the Chief of Naval Research, 1989), pp. 918924.Google Scholar
6. Lanzerotti, Y. D., Pinto, J., Wolfe, A., and Thomson, D. J. in Proc. Tenth International Detonation Symposium, (Office of Naval Research, 1993), pp. 190198.Google Scholar
7. Lanzerotti, Y. D. in Atomic Force Microscopy/Scanning Tunneling Microscopy Conf. Proc. edited by Cohen, S. H., Bray, M. T. and Lightbody, M. L. (Plenum, 1995) pp. 127136.Google Scholar
8. Lanzerotti, Y. D., Meisel, L. V., Johnson, M. A., Wolfe, A., and Thomson, D. J. in Atomic Resolution Microscopy of Surfaces and Interfaces, edited by Smith, David J., (Mat. Res. Soc. Proc. 466, Pittsburgh, PA, 1997) pp. 179184.Google Scholar
9. Meisel, L. V., Scanlon, R. D., Johnson, M. A. and Lanzerotti, Y. D. in Shock Compression of Condensed Matter – 1999, edited by Furnish, M. D., Chhabildas, L. C., and Hixon, R. W. (Am. Inst. of Physics Conf. Proc. 505, Melville, New York, 2000) pp. 727730.Google Scholar
10. Meisel, L. V., Scanlon, R. D., Johnson, M. A., and Lanzerotti, Y. D., Multiscale Phenomena in Materials – Experiments and Modeling edited by Robertson, I. M., Lassila, D. H., Devincre, B., and Phillips, R., (Mat. Res. Soc. Proc. 578, Pittsburgh, PA, 2000) pp. 363367.Google Scholar
11. Smith, D. L. and Thorpe, R. W., J. Mat. Sci. 8, pp. 757759, (1973).Google Scholar
12. Lanzerotti, Y. D., Autera, J., Pinto, J., and Sharma, J. in High Pressure Science and Technology – 1993 edited by Schmidt, S. C., Shaner, J. W., Samara, G. A., and Ross, M. (Am. Inst. of Physics Conf. Proc. 309, New York, 1994) pp. 489491.Google Scholar
13. Lanzerotti, Y. D., Autera, J., Borne, L., Sharma, J., Decomposition, Combustion, and Detonation Chemistry of Energetic Materials, edited by Brill, Thomas B., Russell, Thomas P., Tao, William C. and Wardle, Robert B., (Mat. Res. Soc. Proc. 418, Pittsburgh, PA, 1996) pp. 7378.Google Scholar
14. Sharma, J., Coffey, C. S., Armstrong, R. W., Elban, W. L., and Lanzerotti, Y. D. in Shock Compression of Condensed Matter – 1999, edited by Furnish, M. D., Chhabildas, L.C., and Hixon, R. W. (Am. Inst. of Physics Conf. Proc. 505, 2000) pp. 719722.Google Scholar
15. Sharma, J., Coffey, C. S., Armstrong, R. W., Elban, W. L., and Lanzerotti, Y. D., Chemical Physics (Russian) 20, n. 8, pp. 5054 (2001).Google Scholar
16. Dobratz, B. M. and Crawford, P. C., LLNL Explosives Handbook, Properties of Chemical Explosives and Explosive Simulants, UCRL-52997 Change 2 (Lawrence Livermore National Laboratory, 31 January 1985) pp. 19143.Google Scholar
17. Dobratz, B. M. and Crawford, P. C., LLNL Explosives Handbook, Properties of Chemical Explosives and Explosive Simulants, UCRL-52997 Change 2 (Lawrence Livermore National Laboratory, 31 January 1985) pp. 19131.Google Scholar
18. Fedoroff, Basil T. and Sheffield, Oliver E., Encyclopedia of Explosives and Related Items, PATR 2700, vol. 3 (Picatinny Arsenal, Dover, NJ, 1966) p. 615; Military Explosives, Army Technical Manual TM9–1300–214, (Headquarters, Department of the Army, Washington, DC, September, 1984) pp. 8–32, 8–33.Google Scholar
19. Williamson, W. O., J. Appl. Chem. 8, pp. 646651 (1958).Google Scholar
20. Hull, Derek, Fractography: observing, measuring and interpreting fracture surface topography (Cambridge University, 1999) p. 93.Google Scholar
21. Miller, G. R. and Garroway, A. N., A Review of the Crystal Structures of Common Explosives, Part I: RDX, HMX, TNT, PETN and Tetryl, Naval Research Laboratory Report NRL/MR/6120—01–8585, 2001, pp. 1016.Google Scholar
22. Gallagher, H. G., Roberts, K. J., Sherwood, J. N., and Smith, L. A., J. Mater. Chem. 7(2), p. 229235 (1997).Google Scholar
23. Gallagher, H. G., Vrcelj, R. M., and Sherwood, J. N., J. Crystal Growth, 250, pp. 486–298 (2003).Google Scholar
24. Chick, M. C., Connick, W., and Thorpe, B. W., J. Cryst. Growth, 7, pp. 317325 (1970).Google Scholar
25. Seidensticker, R. G. and Hamilton, D. R., J. Appl. Phys. 34, pp. 31133119 (1963).Google Scholar
26. Sharma, J., Armstrong, R. W., Elban, W. L., Coffey, C. S., and Sandusky, H. W., Appl. Phys. Lett. 78, pp. 457459 (2001).Google Scholar