Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-04T05:31:23.984Z Has data issue: false hasContentIssue false

The Nanomechanical Effect of Dendrimer Interlayers Underneath Cu Ultrathin Films

Published online by Cambridge University Press:  11 February 2011

Junyan Zhang
Affiliation:
Center for Materials for Information Technology and Chemistry Department, University of Alabama, Tuscaloosa, AL 35487
Micheal Curry
Affiliation:
Center for Materials for Information Technology and Chemistry Department, University of Alabama, Tuscaloosa, AL 35487
Shane Street
Affiliation:
Center for Materials for Information Technology and Chemistry Department, University of Alabama, Tuscaloosa, AL 35487
Get access

Abstract

Two kinds of dendrimers, DAB and PAMAM (with the same terminal groups but different branched repeat units), were chosen as interlayers for Cu ultrathin films deposited on native oxide Si(100) wafers. 10 nm Cu thin films were deposited directly on the dendrimer monolayers by DC sputtering at room temperature. The nanomechanical results show that PAMAM and DAB have significant effects on the properties of the resulting films, with the DAB layer acting as a stiffer ‘spring’, compared to PAMAM, underneath the Cu films. Both dendrimer interlayers lower the hardness of the film, compared to Cu alone; the effect is greater for PAMAM than DAB interlayers. However, the introduction of either dendrimer monolayer significantly increased the elasticity of the Cu film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kiene, M., Strunskus, T., Peter, R., and Faupel, F., Adv. Mater. 10, 13571360(1998)3.0.CO;2-9>CrossRefGoogle Scholar
2. Pattabi, M., Rao, K.M., Sainkar, S.R., Sastry, M., Thin Solid Films, 338, 4045(1999)CrossRefGoogle Scholar
3. Ma, Z.H., Lim, S.L., Tan, K.L., Li, S., Kang, E.T., Surface Science, 454–456, 995999(2000)CrossRefGoogle Scholar
4. Kim, K.S., Jang, Y.C., Kim, H.J., Quan, Y.C., Choi, J., Jung, D., Lee, N.E., Thin Solid Films, 377–378, 122128(2000)CrossRefGoogle Scholar
5. Brüggemann, M., Masten, A., Wiβmann, P., Thin Solid Films, 406, 294298(2002)CrossRefGoogle Scholar
6. Hau-Riege, S.P., Journal of Applied Physics, 91, 20142022(2002)CrossRefGoogle Scholar
7. Bosman, A.W., Janssen, H.M., Meijer, E.W., Chem. Rev., 99, 16651688(1999)CrossRefGoogle Scholar
8. Kriesel, J.W., Tilley, T.D., Advanced Materials, 13(21), 16451648(2001)3.0.CO;2-1>CrossRefGoogle Scholar
9. Tully, D.C., Frechet, J.M.J., Chem. Commun., 12291239(2001)CrossRefGoogle Scholar
10. Grayson, S.M., Frechet, J.M.J., Chem. Rev., 101, 38193867(2001)CrossRefGoogle Scholar
11. “Dendrimers II: Architecture, nanostructure and supramolecular chemistry”, Editor: Fritz Vogtle, 2000, SpringerGoogle Scholar
12. Wells, M., Crooks, R.M., J. Am. Chem. Soc. 118, 39883989(1996)CrossRefGoogle Scholar
13. Tsukruk, V.V., Rinderspacher, F., Bliznyuk, V.N., Langmuir, 13, 21712176(1997)CrossRefGoogle Scholar
14. Li, J., Piehler, L.T., Qin, D., Baker, J.R., Tomalia, D.A., Langmuir, 16, 56135616(2000)CrossRefGoogle Scholar
15. Zhang, X., Wilhelm, M., Klein, J., Pfaadt, M., Meijer, E.W., Langmuir, 16, 38843892(2000)CrossRefGoogle Scholar
16. Baker, L.A., Zamborini, F.P., Sun, L., Crooks, R.M., Anal. Chem., 71, 44034406(1999)CrossRefGoogle Scholar
17. Street, S.C., Rar, A., Zhou, J.N., Liu, W.J., Barnard, J.A., Chem. Mater., 13, 36693677(2001)CrossRefGoogle Scholar
18. Oliver, W.C., Pharr, G.M., J. Mater. Res., 7, 15641583(1992)CrossRefGoogle Scholar
19. Tsui, T.Y., Vlassak, J., Nix, W.D., J. Mater. Res., 14, 21962203(1999)CrossRefGoogle Scholar