Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T08:53:18.293Z Has data issue: false hasContentIssue false

Nanometer-sized Bismuth Crystallites Synthesized from a High-temperature Reducing System

Published online by Cambridge University Press:  21 March 2011

Jiye Fang
Affiliation:
Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148
Kevin L. Stokes
Affiliation:
Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148
Weilie L. Zhou
Affiliation:
Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148
C. B. Murray
Affiliation:
Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148
Charles J. O'Connor
Affiliation:
Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148
Get access

Abstract

Nanometer-sized bismuth has successfully been prepared using a high-temperature organic reducing system by presence of proper capping/stabilizing agents. Self-assembly of bismuth was, at the first time, obtained using size-selected nanoparticles (15nm in size). Various synthetic conditions, which may significantly affect the formation of self-assembled nanocrystalline bismuth, have been optimized and discussed in this paper. The as-prepared nanocrystallites exist in a single rhombohedral phase with high crystallinity, and oxidation problem has been efficiently overcome within limited period by employing this method.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B. 47, 12727-? (1993);Google Scholar
Koga, T., Harman, T. C., Cronin, S. B., and Dresselhaus, M. S., Phys. Rev. B., 60, 1428614293 (1999).Google Scholar
2. Dresselhaus, M. S., Lin, Y. M., Dresselhaus, G., Sun, X., Zhang, Z., Cronin, S. B., Koga, T., and Ying, J.Y., in 18th International Conference on Thermoelectrics Proceesings, ICT'99, (IEEE Catalog Number: 99TH8407, Baltimore, 1999) pp. 9299;Google Scholar
Sun, X., Lin, Y. M., Cronin, S. B., Dresselhaus, M. S., Ying, J. Y., and Chen, G., in 18th International Conference on Thermoelectrics Proceesings, ICT'99, (IEEE Catalog Number: 99TH8407, Baltimore, 1999) pp. 394-397.Google Scholar
3. Zhang, Z., Sun, X., Dresselhaus, M. S., Ying, J. Y., and Heremans, J. P., Appl. Phys. Lett., 73, 15891591 (1998).Google Scholar
4. Liu, K., Chien, C. L., and Searson, P. C., Phys. Rev. B, 58, 1468114684 (1998).Google Scholar
5. Fang, J., Stokes, K. L., Wiemann, J., and Zhou, W.L., Mater. Lett. 42, 113120 (1999).Google Scholar
6. Foos, E. E., Stroud, R. M., Berry, A. D., Snow, A. W., and Armistead, J. P., J. Am. Chem. Soc. 122, 71147115 (2000).Google Scholar
7. (a) Murray, C. B., Kagan, C. R., and Bawendi, M. G., Science, 270, 13351338(1995);Google Scholar
(b) Murray, C. B., Norris, D. J., and Bawendi, M. G., J. Am. Chem. Soc 115, 87068715 (1993).Google Scholar
8. (a) Sun, S., Murray, C. B., J. App. Phys. 85, 43254330 (1999);Google Scholar
(b) Sun, S., Murray, C. B., Weller, D., Folks, L., and Moser, A., Science, 287, 19891992 (2000).Google Scholar
9. Sun, S., Murray, C.B., and Doyle, H., Mat. Res. Soc. Symp. Proc., 577, 385398 (1999)Google Scholar
10. Murray, C. B., Kagan, C. R., and Bawendi, M. G., Ann. Rev. Mater. Science, 30, 545610 (2000).Google Scholar
11. in X-ray Diffraction Procedures for Polycrystalline and Amourphous Materials, edited by Klug, H. P., and Alexander, L. E., (Wiley, New York, 1976).Google Scholar