Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T02:06:56.579Z Has data issue: false hasContentIssue false

Nanoparticle suspensions studied by x-ray photon correlation spectroscopy

Published online by Cambridge University Press:  01 February 2011

Xinhui Lu
Affiliation:
xinhui.lu@yale.edu, Yale University, Department of Physics, Sloane Physics Laboratory, New Haven, CT, 06520, United States
Simon G. J. Mochrie
Affiliation:
simon.mochrie@yale.edu, Yale University, Department of Physics, Sloane Physics Laboratory, New Haven, CT, 06520, United States
S. Narayanan
Affiliation:
sureshn@aps.anl.gov, Argonne National Laboratory, Advanced Photon Source, South Cass Avenue, Argonne, IL, 60439, United States
Alec R. Sandy
Affiliation:
asandy@aps.anl.gov, Argonne National Laboratory, Advanced Photon Source, South Cass Avenue, Argonne, IL, 60439, United States
Michael Sprung
Affiliation:
sprung@aps.anl.gov, Argonne National Laboratory, Advanced Photon Source, South Cass Avenue, Argonne, IL, 60439, United States
Get access

Abstract

Multispeckle x-ray photon correlation spectroscopy measurements, carried out at beamline 8-ID at the Advanced Photon Source at Argonne National Laboratory, of opaque suspensions of silica nanoparticles in water and lutidine-water binary mixtures are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beysens, D. and Esteve, D.. Adsorption phenomena at the surface of silica spheres in a binaryliquid mixture. Phys. Rev. Lett., 54:2123, 1985.10.1103/PhysRevLett.54.2123Google Scholar
Beysens, D. and Narayanan, T.. Wetting induced aggregration of colloids. J. Stat. Phys., 95:997, 1999.Google Scholar
Crocker, J. C., Matteo, J. A., Dinsmore, A. D., and Yodh, A. G.. Entropic attraction and repulsion in binary colloids probed with line optical tweezer. Phys. Rev. Lett., 82(21):4352, 1999.10.1103/PhysRevLett.82.4352Google Scholar
Dierker, S. B., Pindak, R., Fleming, R. M., Robinson, I. K., and Berman, L. E.. X-ray photon correlation spectroscopy study of Brownian motion of gold colloids in glycerol. Phys. Rev. Lett., 75:449452, 1995.10.1103/PhysRevLett.75.449Google Scholar
Falus, P., Borthwick, M. A., and Mochrie, S. G. J.. Fast CCD camera for x-ray photon correlation spectroscopy and time-resolved x-ray scattering and imaging. Rev. Sci. Instr., 75:4383, 2004.Google Scholar
Götze, W. and Sjögren, L.. -relaxation at the glass transition of hard spherical colloids. Phys. Rev. A, 43:5442, (1991).Google Scholar
Götze, W. and Sjögren, L.. Relaxation processes in supercooled liquids. Rept. Prog. Phys., 55:241, (1992).10.1088/0034-4885/55/3/001Google Scholar
Lumma, D., Lurio, L. B., Borthwick, M. A., Falus, P., and Mochrie, S. G. J.. Structure and dynamics of concentrated dispersions of polystyrene latex spheres in glycerol: Static and dynamic x-ray scattering. Phys. Rev. E, 62:8258, (2000).10.1103/PhysRevE.62.8258Google Scholar
Lurio, L. B., Lumma, D., Falus, P., Borthwick, M. A., Mochrie, S. G. J., Pelletier, J.-F., Sutton, M., Malik, A., and Stephenson, G. B.. Absence of scaling for the intermediate scattering function of a hard-sphere suspension: static and dynamic x-ray scattering from concentrated polystyrene latex spheres. Phys. Rev. Lett., 84:785, (2000).Google Scholar
Pham, K. N., Puertas, A. M., Bergenholtz, J., Egelhaaf, S. U., Moussaid, A., Pusey, P. N., Schofield, A. B., Cates, M. E., Fuchs, M., and Poon, W. C. K.. Multiple glassy states in a simple model system. Science, 296:104, (2002).Google Scholar
Pham, K. N., Egelhaaf, S. U., Pusey, P. N., and Poon, W. C. K.. Glasses in hard sphere with short-range attraction. Phys. Rev. E, 69:011503, (2004).Google Scholar
Pontoni, D., Narayanan, T., Petit, J.-M., Grubel, G., and Beysens, D.. Microstructure and dynamics near an attractive colloidal glass transition. Phys. Rev. Lett., 90:188301, (2003).Google Scholar
Puertas, A. M., Fuchs, M., and Cates, M. E.. Simulation study of nonergodicity transitions: Gelation in colloidal systems with short-range attractions. Phys. Rev. E, 67:031406, (2003).10.1103/PhysRevE.67.031406Google Scholar
Pusey, P. N.. Colloidal suspensions. In Hansen, J.P., Levesque, D., and Zinn-Justin, J., editors, Liquids, Freezing and the Glass Transition, pages 763 – 942. North-Holland, Amsterdam, 1991.Google Scholar
Segre, P. N., Behrend, O. P., and Pusey, P. N.. Short-time Brownian motion in colloidal suspensions – experiment and simulation. Phys. Rev. E, 52:5070, (1995).10.1103/PhysRevE.52.5070Google Scholar
Thurn-Albrecht, T., Steffen, W., Patkowski, A., Meier, G., Fisher, E. W., Grübel, G., and Abernathy, D. L.. Photon correlation spectroscopy of colloidal palladium using a coherent xray beam. Phys. Rev. Lett., 77:54375440, 1996.10.1103/PhysRevLett.77.5437Google Scholar
Trappe, V., Prassad, V., Cipelletti, L., Segre, P. N., and Weitz, D. A.. Jamming phase diagram for attractive particles. Nature, 411:772, (2001).10.1038/35081021Google Scholar
Tsui, O. K. C. and Mochrie, S. G. J.. Dynamics of concentrated colloidal suspensions probed by XPCS. Phys. Rev. E, 57:2030, (1998).Google Scholar
Megen, W. van and Pusey, P. N.. Dynamic light scattering study of the glass transition in a colloidal suspension. Phys. Rev. A, 43:5429, (1991).10.1103/PhysRevA.43.5429Google Scholar
Megen, W. van and Underwood, S. M.. Glass transition in colloidal hard spheres – mode coupling theory analysis. Phys. Rev. Lett., 70:2766, (1993).10.1103/PhysRevLett.70.2766Google Scholar
Megen, W. van and Underwood, S. M.. Glass-transition in colloidal hard spheres – measurement and mode-coupling-theory analysis of the coherent intermediate scattering function. Phys. Rev. E, 49:42064220, 1994.Google Scholar
Weeks, E. R., Urbach, J. S., and Swinney, H. L.. Anomalous diffusion in asymmetric random walk with a quasi-geostrophic flow example. Physica D, 97:291, (1996).10.1016/0167-2789(96)00082-6Google Scholar