Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T09:27:34.589Z Has data issue: false hasContentIssue false

Nanoscale Modeling of Shock-Induced Deformation of Diamond

Published online by Cambridge University Press:  01 February 2011

S. V. Zybin
Affiliation:
The George Washington University, Washington D.C. 20052
I. I. Oleinik
Affiliation:
University of South Florida, Tampa, FL 33620
M. L. Elert
Affiliation:
U.S. Naval Academy, Annapolis, MD, 21402
C. T. White
Affiliation:
Naval Research Laboratory, Washington D.C. 20375
Get access

Abstract

Molecular dynamics (MD) simulations of shock-induced deformations in diamond were performed using a reactive bond order (REBO) potential. A splitting of shock wave structure into elastic and crystal deformation fronts was observed in the [110] and [111] crystallographic directions above piston velocity thresholds of up ≈ 1.8 and 2.5 km/s, respectively. The crystal lattice response in a split two-wave regime consists of the relative movement of {111} planes in the diamond crystal and has different structural character for [110] and [111] shock waves. The strain produced by a [110] shock wave occurs only along one of the transverse crystalline directions, whereas in the [111] case crystal deformation involves the movement of the atoms in both transverse directions. To gain insight into the atomistic mechanisms of orientational dependence of shock compression of crystals, we have investigated in detail the constitutive stress-strain relationships under static uniaxial compression. The REBO potential gives a reasonably good description of stresses and energetics under moderate uniaxial compressions corresponding to an elastic shock wave regime. However, under compressions higher than 10% ([110] case) and 20% ([111] case) the REBO potential shows deficiencies in the quantitative description of stress response that might affect the MD picture of shock wave deformations in diamond.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhakhovski, V. V., Zybin, S. V., Nishihara, K., and Anisimov, S. I., Phys. Rev. Lett., 83, 1175 (1999);Google Scholar
in Proceedings of Symposium on Shock Waves'98, Aoyama Gakuin Univ., (Tokyo, 1999), pp. 241244.Google Scholar
2. Robertson, D. H., Brenner, D. W., and White, C. T., in High Pressure Shock Compression of Solids III, edited by Davison, L. and Shahinpoor, M. (Springer, 1998), pp. 3757.Google Scholar
3. Germann, T.C., Holian, B.L., Lomdahl, P.S., and Ravelo, R., Phys. Rev. Lett., 84, 5351 (2000).Google Scholar
4. Zhakhovskii, V. V., Zybin, S. V., Nishihara, K., and Anisimov, S. I., Progr. Theor. Phys. Suppl., 138, 223 (2000).Google Scholar
5. Zybin, S. V., Zhakhovskii, V. V., Elert, M. L., and White, C. T., in Shock Compression of Condensed Matter - 2003, edited by Furnish, M. et al, AIP Conf. Proc. (in press).Google Scholar
6. Chaplot, S. L. and Sikka, S. K., Phys. Rev. B, 61, 11205 (2000).Google Scholar
7. Robertson, D. H., Brenner, D. W., and White, C. T., Phys. Rev. Lett., 67, 3132 (1991).Google Scholar
8. Kadau, K., Germann, T. C., Lomdahl, P. S., and Holian, B. L., Science, 296, 1681 (2002).Google Scholar
9. Holian, B.L. and Lomdahl, P.S., Science, 280, 2085 (1998).Google Scholar
10. Hirth, J. P., Hoagland, R. G., Holian, B. L., and Germann, T. C., Acta Mater., 47, 2409 (1999).Google Scholar
11. Maillet, J.-B., Mareschal, M., Soulard, L., Ravelo, R., Lomdahl, P. S., Germann, T. C., and Holian, B. L., Phys. Rev. E, 63, 016121–1 (2000).Google Scholar
12. Brenner, D. W., Phys. Rev. B, 42, 9458 (1990).Google Scholar
13. Brenner, D. W., Harrison, J. A., White, C. T., and Colton, R. J., Thin Solid Films, 206, 220 (1991).Google Scholar
14. Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B. and Sinnott, S. B., J. Phys. Cond. Matt., 14, 783 (2002).Google Scholar
15. Dunlap, B. I., Brenner, D. W., Mintmire, J. W., Mowrey, R. C., and White, C. T., J. Phys. Chem., 95, 5763 (1991).Google Scholar
16. Harrison, J. A., White, C. T., Colton, R. J., and Brenner, D. W., Phys. Rev. B, 46, 9700 (1992).Google Scholar
17. Zybin, S. V., Elert, M. L., and White, C. T., Phys. Rev. B, 66, 220102–1(R) (2002).Google Scholar
18. Kondo, K. and Ahrens, T. J., Geophys. Res. Lett., 10, 281 (1983).Google Scholar
19. Swift, D. C. and Ackland, G. J., LANL internal Report No. LAUR-00–2654, 2000.Google Scholar