Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T06:48:15.121Z Has data issue: false hasContentIssue false

Nanoscale Sn Inclusions in Al – Structure and Melting-Solidification Properties

Published online by Cambridge University Press:  15 February 2011

E. Johnson
Affiliation:
Ørsted Laboratory, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark, johnson@fys.ku.dk
C.R.H. Bahl
Affiliation:
Ørsted Laboratory, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark, johnson@fys.ku.dk
V.S. Touboltsev
Affiliation:
Ørsted Laboratory, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark, johnson@fys.ku.dk
A. Johansen
Affiliation:
Ørsted Laboratory, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark, johnson@fys.ku.dk
Get access

Abstract

Al-Sn surface alloys with 2-3 at.% Sn have been made by ion implantation of Sn in Al. The microstructure of the alloys consists of dense distributions of nanoscale Sn inclusions embedded in the Al matrix. For implantations carried out at 425 K the inclusions have sizes in the range from about 2 to 15 nm. The structure of the inclusions is tetragonal - the white Sn structure – with lattice parameters of a = 0.583 nm and c = 0.318 nm respectively, i.e. identical to the lattice parameters of bulk Sn. The inclusions grow in preferred alignment with the matrix and the most commonly observed orientation relationships is given by (100)Sn ||(111)Al and [010]Sn || [211]Al. The shape of the inclusions is partly faceted and partly rounded with larger flat facets on the {100}Sn/{111}Al interfaces. Melting and solidification of the inclusions, which have been studied by in-situ transmission electron microscopy (TEM) and Rutherford backscattering spectrometry (RBS) in combination with channeling, shows a distinct hysteresis. Melting of the inclusions which is associated with a distinct premelting, takes place in the range from about 430 K to 485 K, i.e. significantly below the bulk melting point of 505 K. The premelting is size dependent and the smallest inclusions melt at the lowest temperatures. Solidification requires a substantial undercooling and takes place from around 400 K with a much weaker size dependence.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dahmen, U., Xiao, S.Q., Paciornik, S., Johnson, E. and Johansen, A., Phys. Rev. Let. 78 (1997) 471.Google Scholar
2. Johnson, E., Johansen, A., Dahmen, U., Chen, S.J. and Fujii, T., Mater. Sci. Forum, 294–296 (1999) 115.Google Scholar
3. Schmidt, B.. M.Sc. thesis, University of Copenhagen, (1992).Google Scholar
4. Gråbæk, L., Bohr, J., Andersen, H.H., Johansen, A., Johnson, E., Sarholt-Kristensen, L. and Robinson, I.K., Phys. Rev. B 46 (1992) 2628.Google Scholar
5. Saka, H., Nishikawa, Y. and Imura, T., Philos. Mag. A, 57 (1998) 895.Google Scholar
6. Massalski, T.B. (ed.), Binary Alloy Phase Diagrams, (1986) American Society for Metals, OH, USA.Google Scholar
7. Johnson, E, Hjemsted, K., Schmidt, B., Bourdelle, K.K., Johansen, A., Andersen, H.H. and Sarholt-Kristensen, L., Mat. Res. Soc. Symp. Proc. 235 (1992) 485.Google Scholar
8. Thoft, N.B., Bohr, J., Buras, B., Johnson, E., Johansen, A., Andersen, H.H. and Sarholt-Kristensen, L., J. Phys. D: Appl. Phys. 28 (1995) 539.Google Scholar
9. Sarholt-Kristensen, L., Johansen, A., Johnson, E., Bourdelle, K.K., Olsen, M. and Andersen, H.H., Mater. Sci. Forum, 179–181 (1995) 641.Google Scholar
10. Sørensen, A.H., Johnson, E., Bourdelle, K.K., Johansen, A., Andersen, H.H. and Sarholt-Kristensen, L., Philos. Mag. A, 75 (1997) 1533.Google Scholar
11. Kim, W.T. and Cantor, B., J. Mater. Sci. 26 (1991) 2868.Google Scholar
12. Goswami, R. and Chattopadhyay, K., Acta Mater. 44 (1996) 2421.Google Scholar
13. Kofinan, R., Cheyssac, P., Aouaj, A., Lereah, Y., Deutscher, G., Ben-David, T., Penisson, J.M. and Bourret, A., Surf. Sci. 303 (1994) 231.Google Scholar
14. Couchman, P.R. and Jesser, J.W., Nature 269 (1977) 481.Google Scholar
15. Sun, N.X., Lu, H. and Zhou, Y.C., Philos. Mag. Lett. 76 (1997) 105.Google Scholar
16. Bourdelle, K.K., Khodyrev, V.A., Johansen, A., Johnson, E. and Sarholt-Kristensen, L., Phys. Rev. B, 50 (1994) 82 Google Scholar