Published online by Cambridge University Press: 15 June 2012
A comparative study for picosecond and nanosecond laser structuring was performed in order to identify structure geometries and dimensions that efficiently reduce the significant volume changes during electrochemical cycling of SnO2, a promising anode material. Line structures with widths of 20 μm could significantly improve cycling stability of 3 μm thick magnetron sputtered SnO2 thin films. A reduction of structure size led to further improvement of capacity retention. Free-standing conical micro-structures exhibited the best cycling behavior.