Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T19:20:21.183Z Has data issue: false hasContentIssue false

Nanosize effect in Germanium Nanowire Growth with Binary Metal Alloys

Published online by Cambridge University Press:  13 February 2015

Subhajit Biswas*
Affiliation:
Materials Chemistry & Analysis Group, Department of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland.
Colm O’Regan
Affiliation:
Materials Chemistry & Analysis Group, Department of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland.
Michael A. Morris
Affiliation:
Materials Chemistry & Analysis Group, Department of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland. Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland.
Justin D. Holmes
Affiliation:
Materials Chemistry & Analysis Group, Department of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland. Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland.
Get access

Abstract

This article describes feasible and improved ways towards enhanced nanowire growth kinetics by reducing the equilibrium solute concentration in the liquid collector phase in a vapor-liquid-solid (VLS) like growth model. Use of bi-metallic alloy seeds (AuxAg1-x) influences the germanium supersaturation for a faster nucleation and growth kinetics. Nanowire growth with ternary eutectic alloys shows Gibbs-Thompson effect with diameter dependent growth rate. In-situ transmission electron microscopy (TEM) annealing experiments directly confirms the role of equilibrium concentration in nanowire growth kinetics and was used to correlate the equilibrium content of metastable alloys with the growth kinetics of Ge nanowires. The shape and geometry of the heterogeneous interfaces between the liquid eutectic and solid Ge nanowires were found to vary as a function of nanowire diameter and eutectic alloy composition.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Biswas, S., Kar, S. and Chaudhuri, S., Journal of Physical Chemistry B 109(37), 1752617530 (2005).CrossRefGoogle Scholar
Collins, G., Kolesnik, M., Krstic, V. and Holmes, J. D., Chem. Mat. 22(18), 52355243 (2010).CrossRefGoogle Scholar
Givargizov, E. I., Journal of Crystal Growth 31 (DEC), 2030 (1975).CrossRefGoogle Scholar
Lewis, B and Anderson, J. S., Nucleation and Growth of Thin Films. (Academic, New York, 1978).Google Scholar
Hurle, D. T. J., Handbook of Crystal Growth. (Elsevier, Amsterdam, 1994).Google Scholar
Dayeh, S. A. and Picraux, S. T., Nano Lett. 10(10), 40324039 (2010).CrossRefGoogle Scholar
Algra, R. E., Verheijen, M. A., Feiner, L. F., Immink, G. G. W., van Enckevort, W. J. P., Vlieg, E. and Bakkers, E., Nano Lett. 11(3), 12591264 (2011).CrossRefGoogle Scholar
Prince, P. L. A, Fabrichnaya, O, Springer Materials The Landotl-Bornstein New Series IV/IIB. (Springer, 2012).Google Scholar
Hassam, S., Agren, J., Gauneescard, M. and Bros, J. P., Metallurgical Transactions a-Physical Metallurgy and Materials Science 21(7), 18771884 (1990).CrossRefGoogle Scholar
Sutter, E. A. and Sutter, P. W., ACS Nano 4(8), 49434947 (2010).CrossRefGoogle Scholar
Hofmann, S., Sharma, R., Wirth, C. T., Cervantes-Sodi, F., Ducati, C., Kasama, T., Dunin-Borkowski, R. E., Drucker, J., Bennett, P. and Robertson, J., Nature Materials 7(5), 372375 (2008).CrossRefGoogle Scholar
Gamalski, A. D., Ducati, C. and Hofmann, S., Journal of Physical Chemistry C 115(11), 44134417 (2011).CrossRefGoogle Scholar
Wen, C. Y., Tersoff, J., Hillerich, K., Reuter, M. C., Park, J. H., Kodambaka, S., Stach, E. A. and Ross, F. M., Physical review letters 107(2), 025503 (2011).CrossRefGoogle Scholar
Schwarz, K. W. and Tersoff, J., Nano Lett. 11(2), 316320 (2011).CrossRefGoogle Scholar
Dubrovskii, V. G., Cirlin, G. E., Sibirev, N. V., Jabeen, F., Harmand, J. C. and Werner, P., Nano Lett. 11(3), 12471253 (2011).CrossRefGoogle Scholar
Schwarz, K. W. and Tersoff, J., Physical review letters 102(20), 206101 (2009).CrossRefGoogle Scholar
He, S. T., Xie, S. S., Yao, J. N., Gao, H. J. and Pang, S. J., Applied Physics Letters 81(1), 150152 (2002).CrossRefGoogle Scholar
Sutter, E. and Sutter, P., Nano Lett. 8(2), 411414 (2008).CrossRefGoogle Scholar