Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T10:08:56.185Z Has data issue: false hasContentIssue false

Nanostructuring Rh(110) Surfaces by Ion Etching

Published online by Cambridge University Press:  01 February 2011

Alessandro Molle
Affiliation:
alessandro.molle@mdm.infm.it, Università di Genova, Dipartimento di Fisica, Via Dodecaneso, 33, Genova, 16146, Italy
Andrea Toma
Affiliation:
toma@fisica.unige.it, Università di Genova, Dipartimento di Fisica, Via Dodecaneso, 33, Genova, 16146, Italy
Corrado Boragno
Affiliation:
boragno@fisica.unige.it, Università di Genova, Dipartimento di Fisica, Via Dodecaneso, 33, Genova, 16146, Italy
Ugo Valbusa
Affiliation:
valbusa@fisica.unige.it, Università di Genova, Dipartimento di Fisica, Via Dodecaneso, 33, Genova, 16146, Italy
Francesco Buatier de Mongeot
Affiliation:
buatier@fisica.unige.it, Università di Genova, Dipartimento di Fisica, Via Dodecaneso, 33, Genova, 16146, Italy, +39 (0)103536324, +39 (0)10311066
Get access

Abstract

The ion irradiation of the Rh(110) surface results in the self-organised formation of various nano-structured morphologies like ripples, mounds, pyramids which have been thoroughly studied as a function of the incidence angle and of the impact energy of the impinging ions. A study of the evolution of the surface ripples at various impact energies above the hot-spot threshold, has been rationalized in terms of a contribution due to an ion-induced surface diffusion mechanism. In the very low ion incidence regime, where the formation of hot spots following ion impact is inhibited, the formation of a rhomboidal pyramid pattern is singled out and attributed to the predominant reorganization of surface adatom and vacancies produced in the topmost surface layers. The metastable rhomboidal pyramid pattern, was recently proven to have extraordinary chemical reactivity since it is endowed with a very high density of undercoordinated step sites runnin along the very open <1-12> azimuthal direction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rusponi, S., Costantini, G., Buatier de Mongeot, F., Boragno, C., and Valbusa, U., Appl. Phys. Lett. 75, 3318 (1999).Google Scholar
2. Bradley, R. M. and Harper, J. M. E., J. Vac. Sci. Technol. A 6, 2390 (1988).Google Scholar
3. Sekiba, D., et al., Appl. Phys. Lett. 84, 762 (2004).Google Scholar
4. Molle, A., et al., Appl. Phys. Lett. 86, 141906 (2005).Google Scholar
5. Molle, A., Buatier de Mongeot, F., Molinari, A., Boragno, C., and Valbusa, U., Phys. Rev. Lett. 93, 256103 (2004).Google Scholar
6. Rusponi, S., Costantini, G., Boragno, C., and Valbusa, U., Phys. Rev. Lett. 81, 2735 (1998).Google Scholar
7. Golubović, L., Levandovsky, A., Moldovan, D., Phys. Rev. Lett. 89, 266104 (2002); A. Levandovsky, L. Golubović, D. Moldovan, unpublished.Google Scholar
8. Sekiba, D., et al., Appl. Phys. Lett. 81, 2632 (2002).Google Scholar
9. To have a rough idea of the entity of the activation energies in the Rh surface with respect to other transition metal surfaces, the relevant melting temperatures were compared.Google Scholar
10. Buatier de Mongeot, F., et al., Phys. Rev. Lett. 97, 056103 (2006).Google Scholar
11. Baraldi, A., et al., Phys. Rev. Lett. 93, 046101 (2004).Google Scholar
12. Costantini, G., et al., J. Chem. Phys. 112, 6840 (2000).Google Scholar
13. In the BH framework, mainly concerning amorphous or semiconductor systems, the diffusive component is a minority term which only affects the temperature dependence of the ripple wavelength as appears from Eq. (2).Google Scholar
14. Carter, G. and Vishnyakov, V., Phys. Rev. B 54, 17647 (1996).Google Scholar
15. Makeev, M.A. and Barabási, A. L., Appl. Phys. Lett. 71, 2800 (1997).Google Scholar
16. Makeev, M.A., Cuerno, R., Barabási, A. L., Nucl. Sci. Meth. B 197, 185 (2002); R. Cuerno, A. L. Barabási, Phys. Rev. Lett. 74, 4746 (1995).Google Scholar
17. Molle, A., Buatier de Mongeot, F., Molinari, A., Boragno, C., and Valbusa, U., Phys. Rev. B 73, 155418 (2006).Google Scholar
18. Sigmund, P., J. Mater. Sci. 8, 1545 (1973).Google Scholar
19. Valbusa, U., Boragno, C., and Buatier de Mongeot, F., J. Phys. Condens. Matter 14, 8153 (2002).Google Scholar
20. Habenicht, S., Phys. Rev. B 63, 125419 (2001).Google Scholar
21. Park, S., Khang, B., Jeong, H., and Barabási, A. L., Phys. Rev. Lett. 83, 3486 (1999).Google Scholar
22. Kim, T. C., et al., Phys. Rev. Lett. 92, 246104 (2004).Google Scholar
23. Facsko, S., Dekorsy, T., Koerdt, C., Trappe, C., and Kurz, H., Science 285, 1551 (1999).Google Scholar
24. Chini, T.K., et al., Phys. Rev. B 66, 153404 (2002).Google Scholar
25. Facsko, S., Kurz, H., Dekorsy, T., Phys. Rev. B 16, 165329 (2001).Google Scholar
26. Bringa, E. M., Nordlund, K., and Keinonen, J. Phys. Rev. B 64, 235426(2001)Google Scholar
27. Van Dijken, S., De Bruin, D., and Poelsema, B., Phys. Rev. Lett. 86, 4608 (2001).Google Scholar
28. Campuzano, J.C., in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis editors King, D.A. and Woodru, D.P., Vol. 3, 389 (1990).Google Scholar
29. Mavrikakis, M., Baumer, M., Freund, H.-J., Nørskov, J.K., Catal. Lett. 81, 153 (2002).Google Scholar
30. Rebholz, M., Prins, R., and Kruse, N., Surf. Sci. 259, L797, 1990.Google Scholar
31. Andersson, S. et al., J. Chem. Phys. 108, 2967 (1998).Google Scholar
32. Ertl, G. and. Freund, H.-J., Phys. Today 52, 32 (1999).Google Scholar