Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T10:10:52.756Z Has data issue: false hasContentIssue false

Nanowire Tunnel FETs - Device Structure, Transistor Dimension and Material Choice

Published online by Cambridge University Press:  03 March 2011

J. Knoch*
Affiliation:
TU Dortmund University, 44227 Dortmund, Germany
Get access

Abstract

The performance of tunnel FETs is investigated and the impact of device structure and dimension as well as the impact of the transistor material will be studied. For instance, using nanowires with thin diameter providing one-dimensional transport together with a wrap-gate device structure strongly improves the tunnel FET performance. In addition, the use of III-V type II heterostructures is a further performance booster. However, the use of III-V semiconductors with low density of states can be problematic if the device is not designed properly. Here we will give design guidelines and performance predictions of nanowire tunnel FETs based on non-equilibrium Greens functions formalism simulations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Appenzeller, J. et al. , Phys. Rev. Lett, 93, 196805 (2004).Google Scholar
2. Choi, W.Y. et al. , IEEE Electron Dev. Lett., 28, 743 (2007).Google Scholar
3. Bhuwalka, K.K. et al. , Jap. J. Appl. Phys., 45, 3106 (2006).Google Scholar
4. Boucart, K. and Ionescu, A.M., IEEE Trans. Electron Dev., 54, 1725 (2007).Google Scholar
5. Knoch, J. and Appenzeller, J., Device Research Conf., Conf. Digest, 153 (2005).Google Scholar
6. Sandow, C. et al. , Solid-State Electron., 53, 11261129 (2009).Google Scholar
7. Knoch, J. et al. , Solid-State Electron., 51, 572 (2007).Google Scholar
8. Appenzeller, J. et al. , IEEE Trans. Electron Dev., 55, 2827 (2008).Google Scholar
9. Knoch, J. and Appenzeller, J., phys. stat. sol. a, 205, 679 (2008).Google Scholar
10. Bjoerk, M.T. et al. , Appl. Phys. Lett., 92, 193504 (2008).Google Scholar
11. Magri, R. et al. , J. Appl. Phys., 98, 043701 (2005).Google Scholar
12. Knoch, J. and Appenzeller, J., IEEE Electron Dev. Lett., 31, 305 (2010).Google Scholar