Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T14:17:34.148Z Has data issue: false hasContentIssue false

Nanowires Grown Electrochemically in Porous Templates

Published online by Cambridge University Press:  10 February 2011

C. Schönenberger
Affiliation:
University of Basel, Department of Physics and Astronomy, Klingelbergstrasse 82, CH-4056 Basel, Switzerland.
B. M. I. Van Der Zande
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, NL-5656 A A Eindhoven, The Netherlands.
L. G. J. Fokkink
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, NL-5656 A A Eindhoven, The Netherlands.
Get access

Abstract

Metallic nanowires are synthesized by electrochemical growth in nanopores of either track-etched polycarbonate membranes or anodized aluminum films. The potentiostatic growth is systematically investigated for track-etched membranes with nominal pore diameters dN between 10 and 80 nm. For this model system, the cross-section of the metallic wires is found to vary: the wire diameter, which is argued to directly reflect the pore diameter, is observed to be substantially larger in the middle than at both ends. Therefore, the pores are not cylindrical with constant cross-section, but appear to be ‘cigar-like’. Inside the membranes, the pores are wider by up to a factor 3.

The aluminum oxide template has successfully been used to prepare a colloidal suspension of gold needles (anisotropie metallic colloid) by growing Au wires in the pores, dissolving the aluminum oxide and finally stabilizing and dispersing the ‘nano-rods’ in water. Visible near-infrared absorption spectroscopy reveal two absorption maxima caused by the anisotropy of these scatterers. The maxima can be assigned to a longitudional and transversal plasma resonance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For a review see: (a) Martin, C. R., Science 1994, 266, 196, andGoogle Scholar
(b) Brumlik, C. J., Menon, V. P. and Martin, C. R., J. Mater. Res. 1994, 9, 1174.Google Scholar
2. Possin, G. E., Rev. Sei. Instrum. 1970, 4l, 772.Google Scholar
3. Williams, W. D. and Giordano, N., Rev. Sci. Instrum. 1984, 55, 410.Google Scholar
4. Penner, R. M. and Martin, C. R., J. Electiochem. Soc. 1986, 133, 2206.Google Scholar
5. Furneaux, R. C., Rigby, W. R., and Davidson, A. P., Nature 1989, 337, 147.Google Scholar
6. Fleisher, R. L., Price, P. B., and Walker, R. M., Nuclear Tracks in Solids, Univ. of California Press, Berkley (1975).Google Scholar
7. Tonucci, R. J., Justus, B. L., Campillo, A. J., and Ford, C. E., Science 1992, 258, 783.Google Scholar
8. Wu, Chun-Guey and Bein, Thomas, Science 1994, 264, 1757.Google Scholar
9. Kawai, S. and Ueda, R., J. Electrochem. Soc. 1975, 121, 32.Google Scholar
10. Cai, Z. and Martin, C. R., J. Am. Chem. Soc. 1989, 111, 4138.Google Scholar
11. Blondel, A., Meier, J. P., Doudin, B., and Ansermet, J.-Ph., Appl. Phys. Lett. 1994, 65, 3019;Google Scholar
Piraux, L., George, J. M., Despres, J. F., Leroy, C., Ferain, E., Legras, R., Ounadjela, K., and Fert, A., Appl. Phys. Lett. 1994, 65, 2484.Google Scholar
12. Schönenberger, C., van der Zande, B. M. I., Fokkink, L. G. J., Henny, M., Schmid, C., Krüger, M., Bachtold, A., Huber, R., and Staufer, U., submitted to J. Phys. Chem.Google Scholar
13. Chlebny, I., Doudin, B., and Ansermet, J.-Ph., Nano-Structured Materials 1993, 2, 637.Google Scholar
14. Foss, C. A., Hornyak, G. L., Stockert, J. A., and Martin, C., J. Phys. Chem. 1994, 98, 2963.Google Scholar