Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T07:01:25.209Z Has data issue: false hasContentIssue false

Native Defects in Wurtzite GaN And AlN

Published online by Cambridge University Press:  21 February 2011

P. Boguslawski
Affiliation:
North Carolina State University, Raleigh, NC 27695–8202
E. Briggs
Affiliation:
North Carolina State University, Raleigh, NC 27695–8202
T. A. White
Affiliation:
North Carolina State University, Raleigh, NC 27695–8202
M. G. Wensell
Affiliation:
North Carolina State University, Raleigh, NC 27695–8202
J. Bernholc
Affiliation:
North Carolina State University, Raleigh, NC 27695–8202
Get access

Abstract

The results of an extensive theoretical study of native defects in GaN and of vacancies in AlN are presented. We have considered cation and anion vacancies, antisites, and intersti-tials. The computations were carried out using quantum molecular dynamics, in supercells containing 72 atoms. Due to the wide gap of nitrides, the formation energies of defects depend strongly on the position of the Fermi level. The N vacancy in GaN introduces a shallow donor level that may be responsible for the n-type character of as-grown GaN.Other defects introduce deep states in the gap, with strongly localized wave functions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Davis, R. F., Physica B 185, 1 (1993).Google Scholar
2. Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992).Google Scholar
3. Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985).Google Scholar
4. Li, G. and Rabii, S., preprint.Google Scholar
5. Bachelet, G. B., Hamann, D. R., and Schluter, M., Phys. Rev. B 26, 4199 (1982);Google Scholar
Gonze, X., Stumpf, R., and Schemer, M., Phys. Rev. B 44, 8503 (1991).Google Scholar
6. Lambrecht, R. W. L. and Segall, B., Mat. Res. Soc. Symp. Proc. 242, 367 (1992);Google Scholar
Fiorentini, V., Methfessel, M., and Schemer, M., Phys. Rev. 47, 13353 (1993);Google Scholar
Miwa, K. and Fukumoto, A., Phys. Rev. B 48, 7897 (1993).Google Scholar
7. Wang, C., Zhang, Q.-M., and Bernholc, J., Phys. Rev. Lett. 69, 3789 (1992).Google Scholar
8. Kittel, C., Introduction to Solid State Physics, Wiley and Sons, New York (1986).Google Scholar
9. Zhang, S. B. and Northrup, J. E., Phys. Rev. Lett. 67, 2339 (1991).Google Scholar
10. Laks, D. B., Van De Walle, C. G., Neumark, G. F., and Pantelides, S. T., Phys. Rev. Lett. 66, 648 (1991).Google Scholar
11. Chen, B., Zhang, Q.-M., and Bernholc, J., Phys. Rev. B 49, 2985 (1994).Google Scholar
12. Perlin, P., Teysseire, H., and Suski, T., to be published.Google Scholar
13. Boyn, R., Phys. Stat. Solidi (b) 148, 11 (1988).Google Scholar
Robertson, M. A. and Estreicher, S. K., Mat. Res. Soc. Symp. Proc. 242, 355 (1992), denote these sites by Tand R, respectively.Google Scholar
14. Chadi, J. D., Phys. Rev. B 46, 9400 (1992)Google Scholar