Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T14:17:59.705Z Has data issue: false hasContentIssue false

The nature of islanding in the InGaAs / GaAs epitaxial system

Published online by Cambridge University Press:  17 March 2011

T. Walther
Affiliation:
Institut für Anorganische Chemie, Universität Bonn, Römerstraβe 164, 53117 Bonn, Germany
A.G. Cullis
Affiliation:
Dept. Electronic and Electrical Eng., University of Sheffield, Mappin St., Sheffield S1 3JD, UK
D. J. Norris
Affiliation:
Dept. Electronic and Electrical Eng., University of Sheffield, Mappin St., Sheffield S1 3JD, UK
M. Hopkinson
Affiliation:
Dept. Electronic and Electrical Eng., University of Sheffield, Mappin St., Sheffield S1 3JD, UK
Get access

Abstract

The interest in the phenomenon of islanding in a range of semiconductor systems is in part due to the fundamental importance of the Stranski-Krastanow transition but also driven by potential device applications of self-organized quantum dot arrays. However, the mechanism underlying the island formation is still to a significant degree unclear. In the present work, we focus on the epitaxial InGaAs / GaAs(001) system, with layer deposition by molecular beam epitaxy. Atomic force microscopy is used to measure the surface topography of nominally 4nm thick InxGa1-xAs films. It is shown that the growth mode switches abruptly from flat layer to island growth if a critical Indium composition of x(In)≍0.25 is reached. The structure of such layers during early stages of growth is examined using energy-filtered transmission electron microscopy. Indium gradients in the islanded layers are measured and the driving force for the islanding transition itself is considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Guha, S., Madhukar, A. and Rajkumar, K.C., Appl. Phys. Lett. 57, 2110 (1990).Google Scholar
2.Eaglesham, D.J. and Cerullo, M., Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
3.Tersoff, J. and LeGoues, F.K., Phys. Rev. Lett. 72, 3570 (1994).Google Scholar
4.Cullis, A.G., Pidduck, A.J. and Emeny, M.T., Phys. Rev. Lett. 75, 2368 (1995).Google Scholar
5.Cullis, A.G., Pidduck, A.J. and Emeny, M.T., J. Cryst. Growth 158, 15 (1996).Google Scholar
6.Tersoff, J., Phys. Rev. Lett. 77, 2017 (1996).Google Scholar
7.Venezuela, P. and Tersoff, J., Phys. Rev. B 58, 10871 (1998).Google Scholar
8.Sauer, R., Nilsson, S., Röntgen, P., Heuberger, W., Graf, V., Hangleiter, A. and Spycher, R., Phys. Rev. B 46, 9525 (1992).Google Scholar
9.Kao, Y.C., Celli, F.G. and Liu, H.Y., J. Vac. Sci. Technol. B 11, 1923 (1993).Google Scholar
10.Saitoh, H., Nishi, K. and Sugou, S., Appl. Phys. Lett. 73, 2742 (1998).Google Scholar
11.Bierwolf, R., Hohenstein, M., Phillipp, F., Brandt, O., Crook, G.E. and Ploog, K., Ultramicroscopy 49, 273 (1993).Google Scholar
12.Jouneau, P.H., Tardot, A., Feuillet, G., Mariette, H. and Cibert, J., J. Appl. Phys. 75, 7310 (1994).Google Scholar
13.Treacy, M.M. and Gibson, J.M., J. Vac. Sci. Technol. B 4, 1458 (1986).Google Scholar
14.Benabbas, T., Francois, P., Androussi, Y. and Lefebvre, A., J. Appl. Phys. 80, 2763 (1996).Google Scholar
15.Liao, X.Z., Zou, J., Cockayne, D.J.H., Leon, R. and Lobo, C., Phys. Rev. Lett. 82, 5148 (1999).Google Scholar
16.Walther, T., Boothroyd, C.B., Humphreys, C.J. and Cullis, A.G., Proc. 13th Int. Conf. Electr. Microsc. 1, 365 (1994), ed. Jouffrey, B. and Colliex, C. (les editions de physique, Les Ulis)Google Scholar
17.Walther, T., Boothroyd, C.B. and Humphreys, C.J., Inst. Phys. Conf. Ser. 146, 11 (1995).Google Scholar
18.Tillmann, K., Thust, A., Lentzen, M., Swiatek, P., Förster, A., Urban, K., Laufs, W., Gerthsen, D., Remmele, T. and Rosenauer, A., Phil. Mag. Lett. 74, 309 (1996).Google Scholar
19.Kret, S., Delamarre, C., Laval, J.Y. and Dubon, A., Phil. Mag. Lett. 77, 249 (1998).Google Scholar
20.Kret, S., Benabbas, T., Delamarre, C., Androussi, Y., Dubon, A., Laval, J.Y. and Lefebvre, A., J. Appl. Phys. 86, 1988 (1999).Google Scholar
21.Rosenauer, A., Fischer, U., Gerthsen, D. and Förster, A., Appl. Phys. Lett. 71, 3868 (1997).Google Scholar
22.Schneider, R., Kirmse, H., Hahnert, I. and Neumann, W., Fres. J. Anal. Chem. 365, 217 (1999).Google Scholar
23.Hofer, F., Warbichler, P. and Grogger, W., Ultramicroscopy 59, 15 (1995).Google Scholar
24.Walther, T., Humphreys, C.J., Cullis, A.G. and Robbins, D. J., Mater. Sci. For. 196–201, 505 (1995).Google Scholar
25.Walther, T. and Humphreys, C.J., J. Cryst. Growth 197, 113 (1999).Google Scholar
26.Liu, N., Tersoff, J., Baklenov, O., Holmes, A.L. and Shih, C.K., Phys. Rev. Lett. 84, 334 (2000).Google Scholar
27.Dehaese, O., Wallart, X. and Mollot, F., Appl. Phys. Lett. 66, 52 (1995).Google Scholar
28.Norris, D.J., Cullis, A.G., Grasby, T.J. and Parker, E.H.C., J. Appl. Phys. 86, 7183 (1999).Google Scholar
29.Glas, F., Guille, C., Henoc, P. and Houzay, F., Inst. Phys. Conf. Ser. 87, 71 (1987).Google Scholar
30.Toyoshima, H., Niwa, T., Yamazaki, J. and Okamoto, A., Appl. Phys. Lett. 63, 821 (1993).Google Scholar