Published online by Cambridge University Press: 17 March 2011
The interest in the phenomenon of islanding in a range of semiconductor systems is in part due to the fundamental importance of the Stranski-Krastanow transition but also driven by potential device applications of self-organized quantum dot arrays. However, the mechanism underlying the island formation is still to a significant degree unclear. In the present work, we focus on the epitaxial InGaAs / GaAs(001) system, with layer deposition by molecular beam epitaxy. Atomic force microscopy is used to measure the surface topography of nominally 4nm thick InxGa1-xAs films. It is shown that the growth mode switches abruptly from flat layer to island growth if a critical Indium composition of x(In)≍0.25 is reached. The structure of such layers during early stages of growth is examined using energy-filtered transmission electron microscopy. Indium gradients in the islanded layers are measured and the driving force for the islanding transition itself is considered.