Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-18T23:17:02.319Z Has data issue: false hasContentIssue false

The Nature of Surface Oxides on Magnesium Diboride

Published online by Cambridge University Press:  18 March 2011

Chandana Meegoda
Affiliation:
Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607, USA.
Yu. Paderno
Affiliation:
Institute for Problems of Materials Science, Academy of Sciences of Ukraine, Kiev 252680, Ukraine.
Michael Trenary
Affiliation:
Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607, USA.
Get access

Abstract

Surface oxides present on polycrystalline MgB2 were characterized by high-resolution x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). X-ray diffraction (XRD) measurements were used to determine the MgB2 phases. XRD line broadening analysis reveals a grain size of 40 nm. XPS results show that MgO and B2O3 are the major surface oxides. Auger spectra provide further evidence of the presence of MgO. The B 1s and Mg 2p peaks have been used to quantify the amount of the surface oxides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., and Akimitsu, , Nature, 410, 63 (2001).Google Scholar
2. Bud'ko, S. L., Lapertot, G., Petrovic, C., Cunningham, C. E., Anderson, N., and Canfield, P. C., Phy. Rev. Lett. 86, 1877 (2001).Google Scholar
3. Ecom, C. B., Lee, M. K., Choi, J. H., Belenky, L., Song, X., Cooley, L. D., Naus, M. T., Patnaik, S., Jiang, J., Rikel, M., Polyanskii, A., Gurevich, A., Cai, X. Y., Bu, S. D., Babcock, S. E., Hellstrom, E. E., Larbalestier, D. C., Rogado, N., Regan, K. A., Hayward, M. A., He, T., Slusky, J. S., Inumaru, K., Hass, M. K., and Cava, R. J., Nature, 411, 558 (2001).Google Scholar
4. Canfield, P. C., Finnemore, D. K., Bud'ko, S. L., Ostenson, J. E., Lapertot, G., Cunningham, C. E., and Petovic, C., Phys. Rev. Lett. 86(1), 2423 (2001).Google Scholar
5. Lee, S., Hatsumi, M., Takahiko, M., Yuri, E., Ayako, Y., and Setsuko, T., J. Phys. Soc. Jpn. 70(8), 1521 (2001).Google Scholar
6. Kang, W. N., Kim, H. J., Choi, E. M., Jung, C. M., and Lee, S. I., Science, 292 (5521), 1521 (2001).Google Scholar
7. Wu, Y., Messer, B., and Yang, P., Adv. Mater.13, No 19, 1487 (2001).Google Scholar
8. Schmidt, H., Zasadzinski, J. F., Gray, K. E., and Hinks, D. G., Phys. Rev. B 63, 22054 (2001).Google Scholar
9. Williamson, G. K. and Hall, W. H., Acta Metall., 22 (1953).Google Scholar
10. Vasquez, R.P., Jung, C. U., Park, Min-Seok, Kim, Heon-Jung, Kim, J. Y., and Lee, Sung-lk, Phys.Rev. B 64, 052510 (2001).Google Scholar
11. Aswal, D. K., Muthe, K. P., Singh, Ajay, Sen, Shahswati, Shah, Kunjal, Gupta, L. C., Gupta, S. K.,Sahni, V. C., Physica C 363, 208 (2001).Google Scholar
12. Marvel, G., Escard, J., Costa, P., Castaing, J., Surf. Sci. 35, 109 (1973).Google Scholar
13. Perkins, C. L., Singh, R., Trenary, M., Tanaka, T., Pederno, Y., Surf. Sci. 470, 215 (2001).Google Scholar
14. Wang, Yajun and Trenary, Michael, Chem. Mater. 5, 201 (1993).Google Scholar
15. Moulder, J. F., Stickle, W. F., Sobol, P. E., Bomben, K. D., in: Chastain, J. (Ed.), Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Prairie, MN (1992).Google Scholar
16. Ardizzone, S., Bianchi, C. L., Fadoni, M., Vecelli, B., Appl. Surf. Sci. 119, 253 (1997).Google Scholar
17. Davis, L. E., MacDonald, N. C., Palmberg, P. W., Riach, G. E., Weber, R. E., Handbook of Auger Electron Spectroscopy, Physical Electronics, Eden Prairie, MN (1976).Google Scholar