No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
The Nd-nanocluster Si (nc-Si) coupling strength and its effect in excitation/de-excitation of Nd3+ luminescence in Nd-doped silicon-rich silicon oxide (SRSO) is investigated. Nd-doped SRSO thin films, which consist of nc-Si embedded inside a SiO2 matrix, were prepared by electron-cyclotron-resonance plasma enhanced chemical vapor deposition (ECR-PECVD) of SiH4 and O2 with co-sputtering of Nd and subsequent anneal at 950 °C. Efficient Nd3+ luminescence with moderate temperature quenching is observed. Based on the temperature dependence of Nd3+ luminescence lifetime, a coupling strength between nc-Si and Nd that is strong enough to result in efficient excitation of Nd3+ via quantum confined excitons while weak enough to result in a small back-transfer rate is identified as the key to Nd3+ luminescence.