Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T01:12:20.687Z Has data issue: false hasContentIssue false

Near infrared intersubband absorption in cubic GaN/AlN superlattices

Published online by Cambridge University Press:  01 February 2011

Eric A. DeCuir Jr.
Affiliation:
edecuir@uark.edu, University of Arkansas, Electrical Engineering, 3217 Bell Engineering Center, Fayetteville, AR, 72701, United States, 479.575.5444, 470.575.7967
Emil Fred
Affiliation:
efred@uark.edu, University of Arkansas, Department of Electrical Engineering, 3217 Bell Engineering Center, Fayetteville, AR, 72701, United States
Omar Manasreh
Affiliation:
manasreh@uark.edu, University of Arkansas, Department of Electrical Engineering, 3217 Bell Engineering Center, Fayetteville, AR, 72701, United States
Jorg Schormann
Affiliation:
li_jsch@physik.upb.de, University of Paderborn, Department of Physics, Warburger Srasse 100, Paderborn, 33095, Germany
Donat J. As
Affiliation:
li_da@physik.uni-paderborn.de, University of Paderborn, Department of Physics, Warburger Srasse 100, Paderborn, 33095, Germany
Klaus Lischka
Affiliation:
lischka@uni-paderborn.de, University of Paderborn, Department of Physics, Warburger Srasse 100, Paderborn, 33095, Germany
Get access

Abstract

Room temperature near-infrared intersubband transitions were observed in MBE grown non-polar cubic GaN/AlN superlattice structures. The peak wavelengths of these transitions were observed in the spectral region of 1.5–2.0 μm and were theoretically supported using a transfer matrix approach. All samples were unintentionally doped and grown on 3C-SiC substrates with a 100 nm GaN buffer. Each structure consisted of a 20 periods of GaN/AlN superlattice capped with 100nm of GaN. The thickness of the AlN barrier was fixed at 1.35, while the thickness of the GaN well was varied between 1.6 and 2.1nm. Electrochemical Capacitance Voltage (ECV) measurements allowed direct measurement of the intrinsic carrier concentration in a thick unintentionally doped cubic GaN layer, which confirmed sufficient population of the ground state energy level.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bernardini, F., Fiorentini, V., and Vandenbuilt, D., Phys. Rev. B 56, R10024(1997).Google Scholar
2. Ambacher, O., Dimitrov, R., Stutzmann, M., Foutz, B. E., Murphy, M. J., Smart, J. A., Shealy, J. R., Weimann, N. G., Chu, K., Chumbes, M., Green, B., Sierakowski, A. J., Schaff, W. J., and Eastman, L. F., Physica Status Solidi B 216, 381(1999).Google Scholar
3. Park, Seoung-Hwan and Chuang, Shun-Lien, Appl. Phys. Lett. 76, 1981 (2000).Google Scholar
4. Gmachl, C. and Ng, H. M., Electron. Lett. 39, 567(2003).Google Scholar
5. Kuokstis, E., Sun, W. H., Chen, C. Q., Yang, J. W., and Khan, M. A., J. Appl. Phys. 97, 103719(2005).Google Scholar
6. Schormann, J., Potthast, S., As, D. J., and Lischka, K., Appl. Phys. Lett. 90, 41918 (2007).Google Scholar
7. DeCuir, E. A. Jr, Fred, E., Manasreh, M.O., Schörmann, J., As, D. J., and Lischka, K.. Appl. Phys. Lett. 91, 041911(2007)Google Scholar
8. Levi, A. F. J., Applied Quantum Mechanics (Cambridge University Press, Cambridge, 2003), Chap. 4, p. 167.Google Scholar
9. Asano, T. and Noda, S.. Jpn. J. Appl. Phys. 37 6020(1998).Google Scholar
10. Tchernycheva, M., Nevou, L., Doyennette, L., Julien, F. H., Warde, E., Guillot, F., Monroy, E., Bellet-Amalric, E., Remmele, T., and Albrecht, M., Phys. Rev. B 73, 125347(2006).Google Scholar
11. Iizuka, N., Kaneko, K., and Suzuki, N.. J. Appl. Phys., Suppl. 81, 1803 (2002).Google Scholar
12. Choi, K. K., Levine, B. F., Malik, R. J., Walker, J., and Bethea, C.G., Phys. Rev. B 35, 4172(1987).Google Scholar
13. Julien, F. H., Tchernycheva, M., Nevou, L., Doyennette, L., Colombelli, R., Wardel, E., Guillot, F., and Monroy, E.. phys. stat. sol. (a) 204, 1987 (2007).Google Scholar
14. Kim, K., Lambrecht, W. R. L., Segall, B., and Schilfgaarde, M. Van, Phys. Rev. B 56, 7363(1997).Google Scholar
15. Vurgaftman, I., Meyer, J. R. and Ram-Mohan, L. R., J. Appl. Phys. 89, 5815(2001).Google Scholar
16.Semiconductor heterojunctions and nanostructures,” Manasreh, M. O, (McGraw-Hill, New York, 2005), p. 174.Google Scholar