No CrossRef data available.
Published online by Cambridge University Press: 31 January 2011
The interaction of photons with metallic nanoparticles and nanoantennas yields large enhancement and tight localization of electromagnetic fields in the vicinity of nanoparticles. In the first part of this study, the interaction of a spherical nanoparticle with focused beams of various angular spectra is investigated. This study demonstrates that the focused light can be utilized to manipulate the near-field radiation around nanoparticles. In the second part of this study, the interaction between linearly and radially polarized focused light with prolate spheroidal nanoparticles and nano-antennas is investigated. Strong and tightly localized longitudinal components of a radially polarized focused beam can excite strong plasmon modes on elongated nanoparticles such as prolate spheroids. The effect of a focused beam on parameters such as the numerical aperture of a beam and the wavelength of incident light, as well as particle geometry and composition are also studied.