Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T04:36:43.419Z Has data issue: false hasContentIssue false

Negative Thermal Expansion Behaviour in The NZP Phase NbTi(PO4)3

Published online by Cambridge University Press:  16 February 2011

D. A. Woodcock
Affiliation:
School of Chemistry, University of St. Andrews, Purdie Building, North Haugh, St. Andrews, Fife, UK, KY16 9ST, pl@st-and.ac.uk
P. Lightfoot
Affiliation:
School of Chemistry, University of St. Andrews, Purdie Building, North Haugh, St. Andrews, Fife, UK, KY16 9ST, pl@st-and.ac.uk
R. I. Smith
Affiliation:
The ISIS Facility, CLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX
Get access

Abstract

We present new detailed structural data versus temperature on the Nasicon structured material NbTi(PO4)3 obtained from powder neutron diffraction studies. This material shows a significant volume contraction over the range 20°C < T < 700°C. αa varies between –4.34 and -0.11 × 10-6°C-1 and αc between 0.08 and 3.07 × 10-6°C-1 over this range. This behaviour contrasts with the case of NaTi2(PO4)3 (NaTP) which shows a positive volume expansion. The difference in this behaviour can be explained by the presence of filled MI sites in NaTP which are vacant in the case of NbTP.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Evans, J. S. O., Mary, T. A., Vogt, T., Subramanian, M. A. and Sleight, A. W., Chem. Mater., 8, 28092823 (1996)Google Scholar
2) Evans, J. S. O., Mary, T. A. and Sleight, A. W., J. Solid State Chem., 137, 148160 (1998)Google Scholar
3) Forster, P.M., Yokochi, A. and Sleight, A. W., J. Solid State Chem., 140, 157158 (1998)Google Scholar
4) Woodcock, D.A., Lightfoot, P., Wright, P. A., Villaescusa, L. A., Díaz-Cabañas, M.-J. and Camblor, M. A., J. Mater. Chem, in press Google Scholar
5) Attfield, M. P. and Sleight, A. W., Chem. Commun., pp 601602 (1998)Google Scholar
6) Attfield, M. P. and Sleight, A. W., Chem. Mater., 10, 20132019 (1998)Google Scholar
7) Oota, T. and Yamai, I., J. Amer. Ceram. Soc., 69, 16 (1986)Google Scholar
8) Alamo, J. and Roy, R., J. Amer. Ceram. Soc., 67, C78–C80 (1984)Google Scholar
9) Woodcock, D. A., Lightfoot, P., Ritter, C., Chem. Commun., pp 107108 (1998)Google Scholar
10) Govindan Kutty, K. V., Asuvathraman, R., Mathews, C. K. and Varadaraju, U. V., Mat. Res. Bull., 29, pp 10091016, (1994)Google Scholar
11) Alamo, J., Solid State Ionics, 63-65, 547561 (1993)Google Scholar
12) Smith, R. I. and Hull, S., “User Guide for the Polaris Powder Diffractometer at ISIS”, Report RAL-TR-97-038, Rutherford Appleton Laboratory (1997)Google Scholar
13) Larson, A. C. and Von Dreele, R. B., Los Alamos National Laboratory Report No. LA-UR-86-748, 1987 Google Scholar
14) Berry, F.J., Greaves, C. and Marco, J.F., J. Solid State Chem, 96, 408414 (1992)Google Scholar
15) Lightfoot, P., Woodcock, D. A., Jorgensen, J. D. and Short, S., submitted Google Scholar