Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T10:00:57.802Z Has data issue: false hasContentIssue false

Neutron Diffraction Studies of Magnetic Materials

Published online by Cambridge University Press:  25 February 2011

William J. James*
Affiliation:
Department of Chemistry and Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, Missouri 65 401
Get access

Abstract

The ability of neutron diffraction in determining the nature and extent of magnetic ordering is illustrated for the intermetallic compounds, Y6(Fe,Mn)23, and ErFe3. Substitution with other 3d transition metals influences the Fe-Fe exchange forces such as to alter, sometimes considerably, the magnetic properties, e.g., local site magnetic anisotropies in Er(Fe,Ni)3 and thermal expansion anomalies in the R2 (Fe,Co)14B compounds. When the 3d atoms are near neighbors in the periodic chart, their nuclear scattering lengths for neutrons are sufficiently different to permit the detection of preferential occupation of the several nonequivalent crystallographic 3d metal sites, i.e., atomic ordering, present in the R6M23, and R2Fe14B structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rietveld, H. M., J. Appl. Cryst., 2, 65 (1969).Google Scholar
2. Kebe, B., James, W. J., Deportes, J., Lemaire, R., Yelon, W., and Day, R. K., J. Appl. Phys., 62 (3), 2052 (1981); R. Ballou, J. Deportes, B. Kebe, and R. Lemaire, J. Magn. Magn. Mater., 54–57, 494 (1986).Google Scholar
3. Tharp, D. E., Yang, Y.-C., James, W. J., Yelon, W. B., Xie, D., and Yang, J., J. Appl. Phys., 61 (8), 4249 (1987).Google Scholar
4. Herbst, J. F., Croat, J. J., and Yelon, W. B., Phys. Rev. B, 29, 4176 (1984); J. Appl. Phys., 57, 4086 (1985).Google Scholar
5. Tharp, D. E., Yang, Y.-C., Pringle, O. A., Long, G. J., and James, W. J., J. Magn. Magn. Mater., in press (1987).Google Scholar
6. B.-Cheng, P., Yang, Y.-C., Fu, S.-C., and James, W. J., J. Magn. Magn. Mater., in press (1987).Google Scholar
7. DeSavage, B. F., Bozorth, R. M., Wang, F. E., and Callen, E. R., J. Appl. Phys., 36, 922 (1965).Google Scholar
8. Kirchmayr, H. R., IEEE Trans. Magn., 2, 493 (1966).Google Scholar
9. Dworak, A., Kirchmayr, H. R., and Rauch, H., Z. angew. Phys., 6, 318 (1968).Google Scholar
10. Malik, S. K., Takeshita, T., and Wallace, W. E., Solid State Comm., 23, 599 (1977).Google Scholar
11. Hardman, K., James, W. J., and Yelon, W. B., The Rare Earths in Modern Science and Technology, McCarthy, G. J. and Rhyne, J. J. (eds.), Vol.1, Plenum Press, New York (1978), p. 103.Google Scholar
12. Program received from Van Dreele, R. B., Arizona State University (1975).Google Scholar
13. Delapalme, A., Deportes, J., Lemaire, R., Hardman, K., and James, W. J., J. Appl. Phys., 50, 1987 (1979).Google Scholar
14. Kirchmayr, H. R., J. Appl. Phys. 39, 1088 (1968).Google Scholar
15. Oesterreicher, H., Bettner, H. F., and Parker, F. T., Mag. Lett., 1, 89 (1978).Google Scholar
16. Bechman, C. A., Narasimhan, K.S.V.L., Wallace, W. E., Craig, R. S., and Butera, R. A., J. Phys. Chem. Solids, 37, 245 (1976).Google Scholar
17. James, W. J., Hardman, K., Yelon, W. B., and Kebe, B., Journal de Physique, 40 (C5), 206 (1979).Google Scholar
18. Hardman, K., James, W. J., and Yelon, W. B., J. Phys. Chem. Solids, 41, 1105 (1980).Google Scholar
19. Hardman, K., Rhyne, J. J., and James, W. J., J. Appl. Phys., 52 (3), 2049 (1981).Google Scholar
20. Long, G. J., Hardman, K., and James, W. J., Solid State Comm., 34, 253 (1980).Google Scholar
21. Hardman, K., James, W. J., Long, G. J., Yelon, W. B., and Kebe, B., The Rare Earths in Modern Science and Technology, McCarthy, G. J., Rhyne, J. J., and Silber, H. B. (eds.), Vol. 2, Plenum Press, New York (1980), p. 316.Google Scholar
22. Reilly, J. J., Z. Phys. Chem. N.F., 117, 5155 (1979).Google Scholar
23. Shenoy, G. K., Dunlap, B. D., Viccaro, P. J., and Niarchos, D., Adv. Chem. Ser., 194, 502 (1981).Google Scholar
24. Hardman, K., Ph.D. Thesis, University of Missouri-Rolla (1979).Google Scholar
25. Hardman-Rhyne, K. and Rhyne, J. J., J. Less-Common Met., 94, 23 (1983).Google Scholar
26. Hardman-Rhyne, K., Smith, H. K., and Wallace, W. E., J. Less-Common Met. 94, 95 (1983).Google Scholar
27. Commandre, M., Fruchart, D., Rouault, A., Sauvage, D., Shoemaker, C. B., and Shoemaker, D. P., J. Phys. (Paris) Lett., 40, L639 (1979).Google Scholar
28. Crowder, C., Kebe, B., James, W. J., and Yelon, W. B., The Rare Earths in Modern Science and Technology, McCarthy, G. J., Silber, H. B., and Rhyne, J. J. (eds.), Vol. 3, Plenum Press, New York (1982), p. 473.Google Scholar
29. Hardman-Rhyne, K., Rhyne, J. J., Prince, E., Crowder, C., and James, W. J., Phys. Rev. B, 29 (1), 416 (1984).Google Scholar
30. Westlake, D. G., J. Mater. Sci., 18, 605 (1983); Scr. Metall., 16, 1049 (1982).Google Scholar
31. Stewart, G. A., Zukrowski, J., and Wortmann, G., J. Magn. Magn. Mater., 25, 77 (1981).Google Scholar
32. Parthe, E. and Lemaire, R., Acta Cryst., 331, 1879 (1975).Google Scholar
33. Herbst, J. F. and Yelon, W. B., Research Laboratories, G. M., Research Publication, GMR-5473, July (1986).Google Scholar
34. Bennett, L. H., Watson, R. E., and Pearson, W. B., J. Magn. Magn. Mater., in press (1987).Google Scholar
35. van Noort, H. M. and Buschow, K.H.J., J. Less-Common Met., 113, L9 (1985).Google Scholar
36. Givord, D., Lemaire, R., James, W. J., Moreau, J. M., and Shah, J. S., IEEE Trans. Magn., MAG–7, 657 (1971).Google Scholar
37. Givord, D., Li, H. S., and Tasset, F., J. Appl. Phys., 57, 4094 (1985).Google Scholar