No CrossRef data available.
Article contents
Neutron Irradiation-Induced Dimensional Changes in MEMS Glass Substrates
Published online by Cambridge University Press: 15 March 2011
Abstract
A study is made of radiation-induced expansion/compaction in Pyrex and Hoya SD-2 glasses, which are used as substrates for MEMS devices. Glass samples were irradiated with a neutron fluence composed primarily of thermal neutrons, and a flotation technique was employed to measure the resulting density changes in the glass. Transport of Ions in Matter (TRIM) calculations were performed to relate fast (∼1 MeV) neutron atomic displacement damage to that of boron thermal neutron capture events, and measured density changes in the glass samples were thus proportionally attributed to thermal and fast neutron fluences. The trend for strain with thermal neutron fluence (n/cm2) was found to be a linear compaction of -2.8×10−20 for Pyrex and -1.0×10−21 for Hoya SD-2. For fast neutron fluence, the trend for strain was also linear: -6.1×10−21for Pyrex and -7.9×10−22 for Hoya SD-2. The measured radiation-induced compaction of Pyrex is found to agree with that of previous studies. To our knowledge, this work represents the first study of compaction in Hoya SD-2 with neutron fluence. Hoya SD-2 is of considerable importance to MEMS, owing to its close thermal expansivity match to silicon from 25-500 C.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2002