Published online by Cambridge University Press: 01 February 2011
We investigate the influence of refractive index contrast on the light scattering properties of nanotextured interfaces, which serve as front contact for p-i-n thin-film silicon solar cells. We here focus on ZnO surfaces with randomly oriented pyramidal features, known for their excellent light trapping performance. Transparent replicas, with a different refractive index, but practically identical morphology compared to their ZnO masters, were fabricated via nanoimprinting. Within the theoretical framework we recently proposed, we show how the angular and spectral dependence of light scattered by nanostructures with identical morphology but different refractive index may be related to each other allowing direct comparison of their light trapping potential within the device.