Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T21:26:44.202Z Has data issue: false hasContentIssue false

A New Excimer-Laser-Annealing Method for Manufacturing Large OLED Displays

Published online by Cambridge University Press:  09 August 2012

James S. Im*
Affiliation:
Applied Physics and Applied Mathematics, School of Engineering and Applied Sciences, Columbia University, New York, NY
Get access

Abstract

In this paper, we present an example of a new generation of laser-crystallization approaches that can crystallize Si films for large active-matrix displays at drastically increased effective crystallization rates. The particular scheme presented in this paper is referred to as the advanced excimer-laser-annealing (AELA) method, and it can be readily configured for manufacturing large OLED TVs using various available and field-proven technical components. As in ELA, it is mostly a partial-/near-complete-melting-regime-based crystallization approach; AELA can, however, eventually achieve greater than one order of magnitude increase in the effective rate of crystallization over that of the conventional ELA technique utilizing the same laser source. We discuss in this paper how and why such a dramatic increase can be attained, and some strategical and technological benefits and options that can be entertained regarding, and as a result of the availability of, the AELA technique.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Flattery, D. K., Fincher, C. R., LeCloux, D. L., O’Regan, M. B., and Richard, J. S., Information Display, 27 (2011) p.8.CrossRefGoogle Scholar
Sameshima, T. and Usui, S., MRS Symp. Proc. 71 (1986) p. 435.CrossRefGoogle Scholar
Im, J. S., Kim, H. J., and Thompson, M. O., Appl. Phys. Lett. 63 (1993) p. 1969.CrossRefGoogle Scholar
Brotherton, S. D., Semicond. Sci. Technol. 10 (1995) p. 721.CrossRefGoogle Scholar
Uchikoga, S. and Ibaraki, N., Thin Solid Films, 383 (2001) p. 19.CrossRefGoogle Scholar
Jeong, J. K., Semicon. Sci. Technol. 26 (2011) p. 034008.CrossRefGoogle Scholar
Spinella, C., Lombardo, S., Priolo, F., J. Appl. Phys., 84 (1998) p. 5383.CrossRefGoogle Scholar
Choi, J. H., Kim, D. Y., Park, S. J., Choo, B. K., and Jang, J., Thin Solid Films, 427 (2003) p. 289.CrossRefGoogle Scholar
Im, J. S. and Sposili, R. S., MRS Bull. 21, No. 3 (1996) p. 39.CrossRefGoogle Scholar
Simon, F., Brune, J., and Herbst, L, Appl. Surf. Sci. 252 (2006) p. 4402.CrossRefGoogle Scholar
Hu, Q., Lee, C. S., Li, T., Deng, Y., Chung, U. J., Limanov, A. B., Chitu, A. M., Thompson, M. O., and Im, J. S., MRS Symp. Proc. 1321 (2011) p. 197.CrossRefGoogle Scholar
Kim, H. J. and Im, J. S. MRS Symp. Proc. 321 (1994) p. 665.CrossRefGoogle Scholar
Deng, Y., Hu, Q., Chung, U. J., Chitu, A. M., Limanov, A. B., and Im, J. S., MRS Symp. Proc. 1245 (2010) p. 257.CrossRefGoogle Scholar
Im, J.S., Limanov, A.B., van der Wilt, P.C., Chung, U.J., Chitu, A.M., Information Display, 9 (2007) p.14.Google Scholar
Knowles, D. S., Park, J. Y., Im, C., Das, P., Hoffman, T., Burfeindt, B., Muenz, H., Herkommer, A., van der Wilt, P. C., Limanov, A. B., and Im, J. S., Proc. SID 36, (2005) p. 503.CrossRefGoogle Scholar
Sposili, R. S. and Im, J. S., Appl. Phys. A. A67 (1998) p. 273.CrossRefGoogle Scholar
Sposili, R. S. and Im, J. S., Appl. Phys. Lett. 69 (1996) p. 2864.CrossRefGoogle Scholar
Im, J.S., Crowder, M. A., Sposili, R. S., Leonard, J. P., Kim, H. J., Yoon, J. H., Gupta, V. V., Song, H. J., and Cho, H. S., Phys. Stat. Solidi A , 166, 603 (1998).3.0.CO;2-0>CrossRefGoogle Scholar