Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T10:12:36.105Z Has data issue: false hasContentIssue false

A New Insight into the Nature of the Leached Layers Formed on Basaltic Glasses in Relation to the Choice of Constraints for Long Term Modelling

Published online by Cambridge University Press:  26 February 2011

J. L. Crovisier
Affiliation:
C.S.G.S. (CNRS), 1, rue Blessig 67000 Strasbourg, FRANCE
H. Atassi
Affiliation:
Univ. Louis Pasteur, Lab. de Cristallographie, Minéralogie et Pétrographie, 1, rue Blessig, 67000 Strasbourg, FRANCE
V. Daux
Affiliation:
C.S.G.S. (CNRS), 1, rue Blessig 67000 Strasbourg, FRANCE
J. Honnorez
Affiliation:
C.S.G.S. (CNRS), 1, rue Blessig 67000 Strasbourg, FRANCE
J. C. Petit
Affiliation:
SESD / LECALT, CEN-FAR, B.P.6, 92265 Fontenay-aux-roses, FRANCE
J. P. Eberhart
Affiliation:
Univ. Louis Pasteur, Lab. de Cristallographie, Minéralogie et Pétrographie, 1, rue Blessig, 67000 Strasbourg, FRANCE
Get access

Abstract

Experimental basaltic glass dissolution in fresh water is compared with analyses made on subglacial hyaloclastites from Iceland. The dissolution is initially selective and remains selective if the solution is renewed, whereas it becomes apparently congruent in non-renewed conditions. The congruent dissolution is ascribed to a pH increase (up to 7.0–7.5) which is hampered in the former conditions. The palagonite hydrated layer on the Icelandic basaltic glasses is made up of amorphous to crystallized clay-like materials. The chemical composition of palagonite is close to that of the intergranular clayey material, thus, it is inferred that in most cases no significant chemical gradient exists in the solution between the reaction zone, namely the glass/palagonite interface, and the intergranular solution. We conclude that the dissolution of basaltic glass under subglacial conditions is controlled by thermodynamics and that kinetic constraints, such as the diffusion of species through the altered layers, do not play a major role.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ewing, R.C., in Scientific Basis for Nuclear Waste Management I. edited by McCarthy, G. (Plenum, New York, 1979) p. 57.Google Scholar
2. Honnorez, J., La palagonitisation: l'altération sous-marine du verre volca nique basique de Palagonia (Sicile), (Vulkaninstitut Immanuel Friedlaender. Birkhaüser Verlag, Basel, 9, 1972) 131p.Google Scholar
3. Malow, G., Lutze, W. and Ewing, R.C., J. Non-Cryst. Solids 67, 305 (1984).Google Scholar
4. Lutze, W., Malow, G., Ewing, R.C., Jercinovic, M.J. and Keil, K., Nature 314. 252 (1985)CrossRefGoogle Scholar
5. Byers, C.D., Jercinovic, M.J., Ewing, R.C. and Keil, K., in Scientific Basis for Nuclear Waste Management VIII, edited by Jantzen, C.M., Stone, J.A. and Ewing, R.C. (Mater. Res. Soc. Proc. 44, Pittsburgh, PA 1985) pp. 583590.Google Scholar
6. Grambow, B., Jercinovic, M.J., Ewing, R.C. and Byers, C.D., in Scientific Basis for Nuclear Waste Management: IX. edited by Werme, L.O. (Mater. Res. Soc. Proc. 50, Pittsburgh, PA 1985) pp. 264272.Google Scholar
7. Crovisier, J.L., Fritz, B., Grambow, B. and Eberhart, J.P., in Scientific Ba sis for Nuclear Waste Management IX. edited by Werme, L.O. (Mater. Res. Soc. Proc. 50, Pittsburgh, PA 1985) pp. 274280.Google Scholar
8. Murakami, T., Ewing, R.C. and Bunker, B.C., in Scientific Basis for Nuclear Waste Management XI, edited by Apted, M.J. and Westerman, R.E. (Mater. Res. Soc. Proc. 112, Pittsburgh, PA 1987) pp. 737750.Google Scholar
9. Crovisier, J.L., Honnorez, J. and Eberhart, J.P., Geochim. Cosmochim. Acta 51, 2977 (1987)Google Scholar
10. Crovisier, J.L., Thomassin, J.H., Juteau, T., Eberhart, J.P., Touray, J.C. and Baillif, P., Geochim. et Cosmochim. Acta 47 377 (1983)Google Scholar
11. Ehret, G., Crovisier, J.L. and Eberhart, J.P., J. Non-Cryst. Solids, 86, 72 (1986)CrossRefGoogle Scholar
12. Magonthier, M.C., Brousse, C., Petit, J.C., Dran, J.C., Della Mea, G., Pacagnella, A., in Second. Int. Conf. Nat. Glasses Proc. (1986) in pressGoogle Scholar
13. Petit, J.C., Della Mea, G., Dran, J.C., Magonthier, M.C., Mando, P.A., Pacagnella, A. and Stefanini, A.A.. Submitted to Geochim. Cosmochim. ActaGoogle Scholar
14. Thomassin, J.H. and Touray, J.C., Bull. Minerai. 102, 594599 (1979).Google Scholar
15. Grambow, B., in Scientific Basis for Nuclear Waste Management VIII, edited by Jantzen, C.M., Stone, J.A. and Ewing, R.C. (Mater. Res. Soc. Proc. 44, Pittsburgh, PA 1984) pp. 1527.Google Scholar
16. Saemundsson, K. and Noll, H., Jökull, 24, 4059 (1975).Google Scholar
17. Saemundsson, K., Acta Naturalia Islándica II, 7, 105P. (1967).Google Scholar
18. Tardy, Y. and Fritz, B., Clay Minerals, 16, 361373 (1981).Google Scholar