Published online by Cambridge University Press: 01 February 2011
Macroporous crosslinked polymer gels have been prepared via TEMPO-mediated living radical polymerization of divinylbenzene (DVB) in a solvent with a counter polymer. Incorporating a counter polymer, poly(dimethylsiloxane) (PDMS), induced macroscopic spinodal-type phase separation during the course of polymerization of DVB while suppressing the segregation of DVB-derived particles from the solution by living polymerization. Well-defined macroporous morphologies comprising continuous DVB-derived skeletons have thus obtained. Macropore volume and diameter were independently controlled by altering the concentrations of PDMS and the solvent. Since the present polymer gels are prepared using only the multifunctional “crosslinker”, mechanical durability against bending and compression was found to be as high as inorganic ceramics with similar morphologies and porosities.