Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T06:58:10.748Z Has data issue: false hasContentIssue false

A New Method for the Simultaneous Analysis of I-V/T and C-V/T Measurements of an Au/P-Inp Epitaxial Schottky Diode

Published online by Cambridge University Press:  21 February 2011

P. Cova
Affiliation:
Universidad de Oriente, Departamento de Física, Laboratorio de Modelaje de Dispositivos Semiconductores, Apartado 188, Curnaná 6101, Sucre, Venezuela.
A. Singh
Affiliation:
Universidad de Oriente, Departamento de Física, Laboratorio de Modelaje de Dispositivos Semiconductores, Apartado 188, Curnaná 6101, Sucre, Venezuela.
R. A. Masut
Affiliation:
École Polytechnique de Montréal, Département de génie physique, C.P. 6079, Succ. "Centre-Ville", Montréal (Québec) H3C 3A7, Canada.
J. F. Currie
Affiliation:
École Polytechnique de Montréal, Département de génie physique, C.P. 6079, Succ. "Centre-Ville", Montréal (Québec) H3C 3A7, Canada.
Get access

Abstract

We have developed a new approach to analyze the current- voltage (I-V) characteristics of a tunnel metal-interface layer - semiconductor (MIS) diode which takes into account the voltage dependence of interface states distribution (Nss) and the barrier lowering due to image force. Our method of analysis uses simultaneously the I-V/T and C-V/T data to determine the characteristic parameters of an MIS diodes and is ideal for new epitaxial materials and devices where the carrier density is not known precisely before hand. The experimental verification of our approach to analyze the nonideal I-V/T and C-V/T characteristics of MIS diodes was done by comparing the values of Nss extracted from the room temperature forward I-V characteristics of a p-InP/Au MIS diodes with those obtained by the multi-frequency admittance method. Excellent agreement between the values of Nss determined by two different techniques strongly support the validity of our theoretical expression for the I-V/T characteristics and the method of analysis. Our results indicate that the interface layer thermionic emission was clearly the dominant mechanism of the forward current transport in epitaxial Au/p-InP MIS diodes over the temperature range 200–393 K. The transmission coefficient of the interface-layer obtained from the reverse I-V characteristics has a value of 1.43×10−3 (±7%).

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Cova, P. and Singh, A., Solid-State Electron., 33, 11 (1990).CrossRefGoogle Scholar
2 Freeman, L. B. and Dahlke, W. E., Solid-State Electron. 13, 1483 (1970).CrossRefGoogle Scholar
3 Card, H. C. and Rhoderick, E. H., J. Phys. D: Appl. Phys. 4, 1589 (1971).CrossRefGoogle Scholar
4 Green, M. A., King, F. D. and Shewchun, J., Solid-State Electron. 17, 551 (1974).CrossRefGoogle Scholar
5 Stephen, Fonash, J., Solar Cell Device Physics. (Academic-Press, New York, 1981), section 3.Google Scholar
6 Ching-Yuan, Wu, J. Appl. Phys. 53, 5947 (1982).Google Scholar
7 Chattopadhyay, P. and Daw, A. N., Solid-State Electron. 29, 555 (1986).CrossRefGoogle Scholar
8 Turut, A., Yalcin, N. and Saglam, M., Solid-State Electron. 35, 835 (1992).CrossRefGoogle Scholar
9 Doghish, M. Y. and Ho, F. D., IEEE Trans. Electron Device 39, 2771 (1992).CrossRefGoogle Scholar
10 Singh, A., Solid-State Electron. 28, 223 (1985).CrossRefGoogle Scholar
11 Hsun-Hua, Tseng and Ching-Yuan, Wu, J. Appl. Phys. 61, 299 (1987).Google Scholar
12 Singh, A., Reinhardt, K. C. and Anderson, W. A., J. Appl. Phys. 68, 3475 (1990).CrossRefGoogle Scholar
13 Ikoma, H. and Maeda, K., Jpn. J. Appl. Phys. 30, 19 (1991).Google Scholar
14 Cova, P., Singh, A. and R. A. 'Masut (unpublished).Google Scholar
15 Cova, P., Masut, R. A., Currie, J. F., Bensaada, A., Leonelli, R. et C. Anh Tran, Can. J.Phys., 69, 412(1991).CrossRefGoogle Scholar
16 Sze, S. M., Physics of Semiconductor Devices. (Wiley, New York, 1981).Google Scholar